Publications by authors named "Tamiru Negash Alkie"

Selenium is a trace mineral that has antioxidant activities and can influence the immune system. However, antiviral effects of selenium have not been well studies in chickens. Chickens were therefore fed diets supplemented with two levels of two different sources of selenium (organic: selenium enriched yeast; SEY or inorganic: sodium selenite; SS).

View Article and Find Full Text PDF

Selenium supplementation in poultry feeds has been known to have beneficial effects on the bird health and performance; however antiviral effects of selenium have remained largely unknown. In this study, we have evaluated the effects of supplementation of chicken diets with organic (Selenium Enriched Yeast; SEY) and inorganic selenium (Sodium Selenite; SS) on low pathogenicity avian influenza virus (H9N2) shedding in the cloacal and oropharyngeal swab samples as well as examined the expression of immune related genes. Chickens were fed two doses (High- 0.

View Article and Find Full Text PDF

Mucosal vaccine delivery systems have paramount importance for the induction of mucosal antibody responses. Two studies were conducted to evaluate immunogenicity of inactivated AIV antigens encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). In the first study, seven groups of specific pathogen free (SPF) layer-type chickens were immunized subcutaneously at 7-days of age with different vaccine formulations followed by booster vaccinations two weeks later.

View Article and Find Full Text PDF

Campylobacter jejuni is a leading bacterial cause of human gastroenteritis. Reducing Campylobacter numbers in the intestinal tract of chickens will minimize transmission to humans, thereby reducing the incidence of infection. We have previously shown that oral pre-treatment of chickens with C.

View Article and Find Full Text PDF

With the ongoing intensification of the poultry industry and the continuous need to control pathogens, there is a critical need to extend our understanding of the avian immune system and the role of nutritional interventions on development of immune competence in neonatal chicks. In this review, we will focus on the ontogeny of the lymphoid organs during embryonic life and the first 2 weeks post-hatch, and how early feeding practices improve heath and modulate the development and function of the immune system in young chicks. The evidence for the positive impact of the nutrition of breeder hens on embryonic development and on the survival and immunity of their chicks will also be outlined.

View Article and Find Full Text PDF

The impact of low pathogenic influenza viruses such as subtype H9N2, which infect the respiratory and the gastrointestinal tracts of chickens, on microbial composition are not known. Twenty-day-old specific pathogen-free chickens were assigned to two treatment groups, control (uninfected) and H9N2-infected (challenged via the oral-nasal route). Fecal genomic DNA was extracted, and the V3-V4 regions of the 16S rRNA gene were sequenced using the Illumina Miseq® platform.

View Article and Find Full Text PDF

Campylobacter jejuni (C. jejuni) is a major cause of bacterial food-borne illness in humans. It is considered a commensal organism of the chicken gut and infected chickens serve as a reservoir and shed bacteria throughout their lifespan.

View Article and Find Full Text PDF

Campylobacter jejuni (C. jejuni) is a leading bacterial cause of food-borne illness in humans. Contaminated chicken meat is an important source of infection for humans.

View Article and Find Full Text PDF

Despite the application of live hemorrhagic enteritis virus (HEV) vaccines, HEV field outbreaks are suspected to still occur in turkey flocks in Germany. Increasing secondary bacterial infections in HEV-vaccinated flocks suggest that vaccines may be losing efficacy or, possibly, that vaccine strains are causing disease. Thus, the goal of the current study was to investigate the diversity of HEV isolates from fattening turkey flocks between 2008 and 2012 by characterizing the open reading frame (ORF)1 gene at its 5' and 3' ends.

View Article and Find Full Text PDF

The chicken upper respiratory tract is the portal of entry for respiratory pathogens, such as avian influenza virus (AIV). The presence of microorganisms is sensed by pathogen recognition receptors (such as Toll-like receptors (TLRs)) of the innate immune defenses. Innate responses are essential for subsequent induction of potent adaptive immune responses, but little information is available about innate antiviral responses of the chicken trachea.

View Article and Find Full Text PDF

The innate responses of cecal tonsils against invading microorganisms are mediated by conserved pattern recognition receptors (PRRs) such as the Toll-like receptors (TLRs). TLRs expressed by mammalian and avian immune system cells have the capability to recognize pathogen-associated molecular patterns (PAMPs). Although, the role of TLR ligands in innate and adaptive responses in chickens has been characterized in spleen and bursa of Fabricius, considerably less is known about responses in cecal tonsils.

View Article and Find Full Text PDF

Infectious bursal disease virus (IBDV) affects immature B lymphocytes of the bursa of Fabricius and may cause significant immunosuppression. It continues to be a leading cause of economic losses in the poultry industry. IBDV, having a segmented double-stranded RNA genome, is prone to genetic variation.

View Article and Find Full Text PDF

Cells of the adaptive immune system express Toll-like receptors (TLRs) and are able to respond to TLR ligands. With this in mind, the goal of the current study was to determine the expression of antiviral response genes in the cells of the chicken bursa of Fabricius (BF) to stimulation with TLR ligands. We investigated initially the response of bursal B cells to CpG-ODN, lipopolysaccharide (LPS) and poly(I:C) treatment.

View Article and Find Full Text PDF