Publications by authors named "Tamir Ben Hur"

Alzheimer's disease (AD) is a devastating neurodegenerative disorder affecting millions worldwide. Emerging research has challenged the conventional notion of a direct correlation between amyloid deposition and neurodegeneration in AD. Recent studies have suggested that amyloid and Tau deposition act as a central nervous system (CNS) innate immune driver event, inducing chronic microglial activation that increases the susceptibility of the AD brain to the neurotoxicity of infectious insults.

View Article and Find Full Text PDF

The impact of high-intensity interval training (HIIT) on the central nervous system (CNS) in autoimmune neuroinflammation is not known. The aim of this study was to determine the direct effects of HIIT on the CNS and development of experimental autoimmune encephalomyelitis (EAE). Healthy mice were subjected to HIIT by treadmill running and the proteolipid protein (PLP) transfer EAE model was utilized.

View Article and Find Full Text PDF

Remyelination failure is considered a major obstacle in treating chronic-progressive multiple sclerosis (MS). Studies have shown blockage in the differentiation of resident oligodendrocyte progenitor cells (OPC) into myelin-forming cells, suggesting that pushing OPC into a differentiation program might be sufficient to overcome remyelination failure. Others stressed the need for a permissive environment to allow proper activation, migration, and differentiation of OPC.

View Article and Find Full Text PDF

Background: Malfunction of astrocytes is implicated as one of the pathological factors of ALS. Thus, intrathecal injection of healthy astrocytes in ALS can potentially compensate for the diseased astrocytes. AstroRx® is an allogeneic cell-based product, composed of healthy and functional human astrocytes derived from embryonic stem cells.

View Article and Find Full Text PDF

Background: The mechanisms by which exercise training (ET) elicits beneficial effects on the systemic immune system and the central nervous system (CNS) in autoimmune neuroinflammation are not fully understood.

Objectives: To investigate (1) the systemic effects of high-intensity continuous training (HICT) on the migratory potential of autoimmune cells; (2) the direct effects of HICT on blood-brain-barrier (BBB) properties.

Methods: Healthy mice were subjected to high-intensity continuous training (HICT) by treadmill running.

View Article and Find Full Text PDF

Background: The Amyloid theory of Alzheimer's disease (AD) suggests that the deposition of Amyloid β (Aβ) in the brain triggers a chain of events, involving the deposition of phosphorylated Tau and other misfolded proteins, leading to neurodegeneration via neuroinflammation, oxidative stress, and neurovascular factors. The infectious theory linked various infectious agents with the development of AD, raising the possibility that they serve as etiological causes of the disease. Are these theories mutually exclusive, or do they coincide?

Main Body: In this review, we will discuss how the two theories converge.

View Article and Find Full Text PDF

Background: Meningitis and meningoencephalitis (MME) are potential medical emergencies. Mandatory reporting of all MME cases in the Israel Defense Force (IDF) allows accurate characterization of MME incidence and course. In the present study, we described the epidemiology of MME in soldiers.

View Article and Find Full Text PDF

Current literature lacks structured methodologies for analyzing medical technologies' impact from the patient-centered care perspective. This study introduces, applies and validates 'Patient-Centered Care Impact Analysis' (PCIA) as a method for identifying patient-centered care associated demands and expectations for a particular technology and assessing its compliance with these demands. PCIA involves five stages: (1) demand identification, (2) ranking demands' impact magnitude, (3) scoring demand compliance (DC), (4) demand priority (DP) assignment based on impact magnitude and compliance, (5) generating a summative impact priority number (IPN).

View Article and Find Full Text PDF

The failure of brain microglia to clear excess amyloid β (Aβ) is considered a leading cause of the progression of Alzheimer's disease pathology. Resident brain neural precursor cells (NPCs) possess immune-modulatory and neuro-protective properties, which are thought to maintain brain homeostasis. We have recently showed that resident mouse brain NPCs exhibit an acquired decline in their trophic properties in the Alzheimer's disease brain environment.

View Article and Find Full Text PDF

Physical exercise (PE) impacts various autoimmune diseases. Accordingly, clinical trials demonstrated the safety of PE in multiple sclerosis (MS) patients and indicated beneficial outcomes. There is also an increasing body of research on the beneficial effects of exercise on experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and various mechanisms underlying these effects were suggested.

View Article and Find Full Text PDF

Background: Neurodegeneration is considered the consequence of misfolded proteins' deposition. Little is known about external environmental effects on the neurodegenerative process. Infectious agent-derived pathogen-associated molecular patterns (PAMPs) activate microglia, key players in neurodegenerative diseases.

View Article and Find Full Text PDF

Neural stem/precursor cells (NPC) exhibit powerful immune-modulatory properties. Attenuation of neuroinflammation by intra-cerebroventricular transplantation of NPC, protects from immune-mediated demyelination and axonal injury. The immune modulatory properties of NPC are mediated by a non-species-specific, multiple bystander effect, mediated by both direct cell-cell contact, and by soluble factor(s).

View Article and Find Full Text PDF

Brain stimulation by electroconvulsive therapy is effective in neuropsychiatric disorders by unknown mechanisms. Microglial toxicity plays key role in neuropsychiatric, neuroinflammatory and degenerative diseases. We examined the mechanism by which electroconvulsive seizures (ECS) regulates microglial phenotype and response to stimuli.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated whether Biozzi mice with experimental autoimmune encephalomyelitis (EAE) mimic the disease progression and immune responses seen in progressive multiple sclerosis (MS).
  • Findings showed that chronic EAE in these mice displayed characteristics such as relapsing disease stages, altered blood-brain barrier (BBB) function, and the formation of ectopic lymphoid tissues that relate to tissue damage.
  • The immune response shifted from being T cell-dominant during relapses to B cell-dominant in later stages, suggesting that late chronic EAE may serve as an effective model for researching treatments for progressive MS.
View Article and Find Full Text PDF

: Exercise training induces beneficial effects on neurodegenerative diseases, and specifically on multiple sclerosis (MS) and it's model experimental autoimmune encephalomyelitis (EAE). However, it is unclear whether exercise training exerts direct protective effects on the central nervous system (CNS), nor are the mechanisms of neuroprotection fully understood. In this study, we investigated the direct neuroprotective effects of high-intensity continuous training (HICT) against the development of autoimmune neuroinflammation and the role of resident microglia.

View Article and Find Full Text PDF

Background: Studies have reported beneficial effects of exercise training on autoimmunity, and specifically on multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, it is unknown whether different training paradigms affect disease course via shared or separate mechanisms.

Objective: To compare the effects and mechanism of immune modulation of high intensity continuous training (HICT) versus high intensity interval training (HIIT) on systemic autoimmunity in EAE.

View Article and Find Full Text PDF

In this study (trial registration: NCT02166021), we aimed to evaluate the optimal way of administration, the safety and the clinical efficacy of mesenchymal stem cell (MSC) transplantation in patients with active and progressive multiple sclerosis. Forty-eight patients (28 males and 20 females) with progressive multiple sclerosis (Expanded Disability Status Scale: 3.0-6.

View Article and Find Full Text PDF

Electroconvulsive therapy is highly effective in resistant depression by unknown mechanisms. Microglial toxicity was suggested to mediate depression and plays key roles in neuroinflammatory and degenerative diseases, where there is critical shortage in therapies. We examined the effects of electroconvulsive seizures (ECS) on chronic neuroinflammation and microglial neurotoxicity.

View Article and Find Full Text PDF

Objective: To determine the frequency and significance of concurrent glial (glial-Ab) or neuronal-surface (NS-Ab) antibodies in patients with anti-NMDA receptor (NMDAR) encephalitis.

Methods: Patients were identified during initial routine screening of a cohort (C1) of 646 patients consecutively diagnosed with anti-NMDAR encephalitis and another cohort (C2) of 200 patients systematically rescreened. Antibodies were determined with rat brain immunostaining and cell-based assays.

View Article and Find Full Text PDF

Background: Accumulating data suggest a central role for brain microglia in mediating cortical neuronal death in Alzheimer's disease (AD), and for Toll-like receptor 2 (TLR2) in their toxic activation. Amyloid deposition in preclinical AD is associated with microglial activation but not directly with neurodegeneration. We examined in transgenic 5xFAD mice the hypothesis that systemic TLR2 agonists, derived from common infectious agents, may accelerate neurodegeneration in AD.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) affects one in ten people older than 65 years. Thus far, there is no cure or even disease-modifying treatment for this disease. The immune system is a major player in the pathogenesis of AD.

View Article and Find Full Text PDF

Neuroglial precursor cells (NPC) possess immune-modulatory properties by which they prevent immune-mediated injury in experimental autoimmune encephalomyelitis (EAE). It is unclear whether cell transplantation in a clinical-relevant setup induces ongoing therapeutic effects in a chronic-active model of progressive multiple sclerosis (MS). We examined whether human embryonic stem cell (hESC)-derived NPCs inhibit progressive EAE in Biozzi AB/H mice, manifesting with chronic-active neuroinflammation and demyelinated plaques.

View Article and Find Full Text PDF

Importance: The neuronal mechanism of visual agnosia and foveal crowding that underlies the behavioral symptoms of several classic neurodegenerative diseases, including impaired holistic perception, navigation, and reading, is still unclear. A better understanding of this mechanism is expected to lead to better treatment and rehabilitation.

Objective: To use state-of-the-art neuroimaging protocols to assess a hypothesis that abnormal population receptive fields (pRF) in the visual cortex underlie high-order visual impairments.

View Article and Find Full Text PDF