The genus Polerovirus contains positive-sense, single-stranded RNA plant viruses that cause significant disease in many agricultural crops, including vegetable legumes. This study aimed to identify and determine the abundance of Polerovirus species present within Tasmanian pea crops and surrounding weeds that may act as virus reservoirs. We further sought to examine the genetic diversity of TuYV, the most commonly occurring polerovirus identified.
View Article and Find Full Text PDF(BrYV), a tentative species in the genus , of the family, is a phloem-restricted and aphid-transmitted virus with at least three genotypes (A, B, and C). It has been found across mainland China, South Korea, and Japan. BrYV was previously undescribed in Tasmania, and its genetic variability in the state remains unknown.
View Article and Find Full Text PDFCa signaling regulates physiological processes including chemotaxis in eukaryotes and prokaryotes. Its inhibition has formed the basis for control of human disease but remains largely unexplored for plant disease. This study investigated the role of Ca signaling on motility and chemotaxis of zoospores, responsible for root infections leading to potato root and tuber disease.
View Article and Find Full Text PDFAttempts at management of diseases caused by protozoan plant parasitic Phytomyxea have often been ineffective. The dormant life stage is characterised by long-lived highly robust resting spores that are largely impervious to chemical treatment and environmental stress. This review explores some life stage weaknesses and highlights possible control measures associated with resting spore germination and zoospore taxis.
View Article and Find Full Text PDFLight conditions in retail stores may contribute to potato greening. In this study, we aimed to develop a potato tuber greening risk rating model for retail stores based on light quality and intensity parameters. This was achieved by firstly exposing three potato varieties (Nicola, Maranca and Kennebec) to seven specific light wavelengths (370, 420, 450, 530, 630, 660 and 735 nm) to determine the tuber greening propensity.
View Article and Find Full Text PDFDowny mildew of opium poppy is the single biggest disease constraint afflicting the Australian poppy industry. Within the pathosystem, the transmission of infections via infested seed is of major concern. Both downy mildew pathogens of poppy; Peronospora meconopsidis and P.
View Article and Find Full Text PDFLight-induced tuber greening is one of the most important quality defects of potato. Although varietal and maturity factors are known to affect greening resistance, physiological mechanisms of resistance are poorly understood. We proposed that physiological and biochemical factors within the tuber periderm provide resistance and hypothesised that resistance is primarily related to suberin content.
View Article and Find Full Text PDFDowny mildew is a serious threat to opium poppy production globally. In recent years, two pathogen species, Peronospora somniferi and Peronospora meconopsidis, which induce distinct symptoms, have been confirmed in Australia. In order to manage the spread of these pathogens, identifying the sources of inoculum is essential.
View Article and Find Full Text PDFCommon scab, a globally important potato disease, is caused by infection of tubers with pathogenic Streptomyces spp. Previously, disease-resistant potato somaclones were obtained through cell selections against the pathogen's toxin, known to be essential for disease. Further testing revealed that these clones had broad-spectrum resistance to diverse tuber-invading pathogens, and that resistance was restricted to tuber tissues.
View Article and Find Full Text PDFSpongospora subterranea is responsible for significant potato root and tuber disease globally. Study of this obligate (non-culturable) pathogen that infects below-ground plant parts is technically difficult. The capacity to measure the dynamics and patterns of root infections can greatly assist in determining the efficacy of control treatments on disease progression.
View Article and Find Full Text PDFMultiple disease resistance is an aim of many plant breeding programs. Previously, novel somatic cell selection was used to generate potato variants of "Russet Burbank" with resistance to common scab caused by infection with an actinomycete pathogen. Coexpression of resistance to powdery scab caused by a protozoan pathogen was subsequently shown.
View Article and Find Full Text PDF