Publications by authors named "Tamilarasan Ajaykamal"

The promising biological applications of thiosemicarbazone derivatives have inspired the design, synthesis, and study of their Cu(ii) complexes for anticancer therapeutic applications. Herein, we have evaluated the DNA/protein binding, DNA cleaving, and cytotoxic properties of four mixed-ligand Cu(ii) complexes of the type [Cu(L)(diimine)](NO) 1-4, where HL is 4-oxo-4-chromene-3-carbaldehyde-4()-phenylthiosemicarbazone and diimine is 2,2'-bipyridine (bpy, 1) 1,10-phenanthroline (phen, 2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, 3), or dipyrido-[3,2-:2',3'-]-quinoxaline (dpq, 4). Interestingly, complex 3 with higher lipophilicity shows stronger DNA binding and oxidative DNA cleavage, higher ROS production, and more reversible redox behaviour, resulting in its remarkable cytotoxicity (IC, 1.

View Article and Find Full Text PDF

Three new nickel(ii)-flavonolate complexes of the type [Ni(L)(fla)](ClO) 1-3, where L is the tripodal 4N ligand tris(pyrid-2-ylmethyl)amine (tpa, L1) or (pyrid-2-ylmethyl)bis(6-methylpyrid-2-ylmethyl)amine (6-Me-tpa, L2) or tris(-Et-benzimidazol-2-ylmethyl)amine (Et-ntb, L3), have been isolated as functional models for Ni(ii)-containing quercetin 2,4-dioxygenase. Single crystal X-ray structures of 1 and 3 reveal that Ni(ii) is involved in π-back bonding with flavonolate (fla), as evident from enhancement in C[double bond, length as m-dash]O bond length upon coordination [H(fla), 1.232(3); 1, 1.

View Article and Find Full Text PDF

Recently, mixed-ligand copper(II) complexes have received much attention in searching for alternative metallodrugs to cisplatin. A series of mixed ligand Cu(II) complexes of the type [Cu(L)(diimine)](ClO) 1-6, where the HL is 2-formylpyridine--phenylthiosemicarbazone and the diimine is 2,2'-bipyridine (1), 4,4'-dimethyl-2,2'-bipyridine (2), 1,10-phenanthroline (3), 5,6-dimethyl-1,10-phenanathroline (4), 3,4,7,8-tetramethyl-1,10-phenanthroline (5) and dipyrido-[3,2-:2',3'-]quinoxaline (6), has been synthesized and their cytotoxicity in HeLa cervical cancer cells examined. In the molecular structures of 2 and 4, as determined by single-crystal X-ray studies, Cu(II) assumes a trigonal bipyramidal distorted square-based pyramidal (TBDSBP) coordination geometry.

View Article and Find Full Text PDF

Octahedral complexes of the type [Ni(L)(H2O)3](ClO4)2 (1 and 2), where L is the tridentate 3N ligand 4-methyl-1-(pyrid-2-ylmethyl)-1,4-diazacycloheptane (L1, 1), or 4-methyl-1-(N-methylimidazolyl)-1,4-diazacycloheptane (L2, 2), have been isolated and characterized using elemental analysis, ESI-MS and electronic absorption spectroscopy. The DFT optimized structures of 1 and 2 reveal that the tridentate 3N ligands are coordinated meridionally constituting a distorted octahedral coordination geometry around nickel(ii). In methanol solution, the complexes, upon treatment with triethylamine, generate the reactive red colored low-spin square planar Ni-OH intermediate [Ni(L1/L2)(OH)]+ (1a and 2a), as characterized by ESI-MS and electronic absorption spectroscopy, and energy minimized structures.

View Article and Find Full Text PDF

Octahedral copper(ii) complexes of the type [Cu(trien)(diimine)](ClO4)2 (1-4), where trien is triethylenetetramine and diimine is 2,2'-bipyridine (1), 1,10-phenanthroline (2), 5,6-dimethyl-1,10-phenanthroline (3), and 3,4,7,8-tetramethyl-1,10-phenanthroline (4), have been isolated. Single crystal X-ray structures of 1 and 2 reveal that the coordination geometry around Cu(ii) is tetragonally distorted octahedral. The stereochemical fluxionality of the complexes illustrates the observed trend in CuII/CuI redox potentials and DNA binding affinity (Kb: 1, 0.

View Article and Find Full Text PDF