Publications by authors named "Tamil Arasu"

Dihydroorotate dehydrogenase (DHODH) is the enzyme that catalyzes a rate-determining step during the de novo synthesis of uridine, an important source of cellular pyrimidine nucleotides. Ability to modulate the activity of this enzyme may be used to control diseases associated with rapid, out-of-control cell growth in oncology, immunology, and virology. Emvododstat (PTC299) is a tetrahydro-β-carboline DHODH inhibitor discovered through the GEMS technology (Gene Expression Modulation by Small-Molecules).

View Article and Find Full Text PDF

PTC299 was identified as an inhibitor of VEGFA mRNA translation in a phenotypic screen and evaluated in the clinic for treatment of solid tumors. To guide precision cancer treatment, we performed extensive biological characterization of the activity of PTC299 and demonstrated that inhibition of VEGF production and cell proliferation by PTC299 is linked to a decrease in uridine nucleotides by targeting dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme for pyrimidine nucleotide synthesis. Unlike previously reported DHODH inhibitors that were identified using enzyme assays, PTC299 is a more potent inhibitor of DHODH in isolated mitochondria suggesting that mitochondrial membrane lipid engagement in the DHODH conformation is required for its optimal activity.

View Article and Find Full Text PDF

The continued emergence of bacteria resistant to current standard of care antibiotics presents a rapidly growing threat to public health. New chemical entities (NCEs) to treat these serious infections are desperately needed. Herein we report the discovery, synthesis, SAR and in vivo efficacy of a novel series of 4-hydroxy-2-pyridones exhibiting activity against Gram-negative pathogens.

View Article and Find Full Text PDF

Current anti-VEGF (Vascular Endothelial Growth Factor A) therapies to treat various cancers indiscriminately block VEGF function in the patient resulting in the global loss of VEGF signaling which has been linked to dose-limiting toxicities as well as treatment failures due to acquired resistance. Accumulating evidence suggests that this resistance is at least partially due to increased production of compensatory tumor angiogenic factors/cytokines. VEGF protein production is differentially controlled depending on whether cells are in the normal "homeostatic" state or in a stressed state, such as hypoxia, by post-transcriptional regulation imparted by elements in the 5' and 3' untranslated regions (UTR) of the VEGF mRNA.

View Article and Find Full Text PDF