Publications by authors named "Tamika K Samuel"

Iron is essential for many cellular processes, but can generate highly toxic hydroxyl radicals in the presence of oxygen. Therefore, intracellular iron accumulation must be tightly regulated, by balancing uptake with storage or export. Iron uptake in Leishmania is mediated by the coordinated action of two plasma membrane proteins, the ferric iron reductase LFR1 and the ferrous iron transporter LIT1.

View Article and Find Full Text PDF

Leishmania spp. are trypanosomatid parasites that replicate intracellularly in macrophages, causing serious human morbidity and mortality throughout the world. Trypanosomatid protozoa cannot synthesize heme, so must acquire this essential cofactor from their environment.

View Article and Find Full Text PDF

In this protocol, we present the required materials, and the procedure for making modified C. elegans Habituation and Reproduction media (mCeHR). Additionally, the steps for exposing and acclimatizing C.

View Article and Find Full Text PDF

Adult humans have about 25 trillion red blood cells (RBCs), and each second we recycle about 5 million RBCs by erythrophagocytosis (EP) in macrophages of the reticuloendothelial system. Despite the central role for EP in mammalian iron metabolism, the molecules and pathways responsible for heme trafficking during EP remain unknown. Here, we show that the mammalian homolog of HRG1, a transmembrane heme permease in C.

View Article and Find Full Text PDF

The roundworm Caenorhabditis elegans is a heme auxotroph that requires the coordinated actions of HRG-1 heme permeases to transport environmental heme into the intestine and HRG-3, a secreted protein, to deliver intestinal heme to other tissues including the embryo. Here we show that heme homeostasis in the extraintestinal hypodermal tissue was facilitated by the transmembrane protein HRG-2. Systemic heme deficiency up-regulated hrg-2 mRNA expression over 200-fold in the main body hypodermal syncytium, hyp 7.

View Article and Find Full Text PDF

Extracellular free heme can intercalate into membranes and promote damage to cellular macromolecules. Thus it is likely that specific intercellular pathways exist for the directed transport, trafficking, and delivery of heme to cellular destinations, although none have been found to date. Here we show that Caenorhabditis elegans HRG-3 is required for the delivery of maternal heme to developing embryos.

View Article and Find Full Text PDF