Publications by authors named "Tamie A J Loh"

In the synthesis of CuInS2 quantum dots (QDs), the halide ions present in the copper salts influence the QD growth and optical properties. X-ray absorption spectroscopy allowed rationalizing the halide incorporation in the lattice and the dependence of electronic properties of the material on the ion's polarizability and interaction with hydrophobic moieties.

View Article and Find Full Text PDF

Atomically thin WS nano-petals and nano-bristles were synthesized on vertically aligned carbon nanotubes (CNT) via magnetron sputtering at room temperature. The formation of the nano-petal morphology requires reaching a critical threshold in sputter deposition time, below which an amorphous film of WO is obtained instead. Increasing the deposition time past a second threshold results in a change to the nano-bristle morphology.

View Article and Find Full Text PDF

To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure.

View Article and Find Full Text PDF

Atomically thin tungsten disulfide (WS2) has attracted much attention in recent years due its indirect-to-direct band gap transition, band gap tunability, and giant spin splitting. However, the fabrication of atomically thin WS2 remains largely underdeveloped in comparison to its structural analogue MoS2. Here we report the direct fabrication of highly crystalline few-layer WS2 on silver substrates by pulse laser deposition at the relatively low temperature of 450 °C.

View Article and Find Full Text PDF

Pulsed laser deposition (PLD) on metal substrates has recently been discovered to present an alternative method for producing highly crystalline few-layer MoS2. However, not every metal behaves in the same manner during film growth, and hence, it is crucial that the ability of various metals to produce crystalline MoS2 be thoroughly investigated. In this work, MoS2 was deposited on metal substrates, Al, Ag, Ni, and Cu, using a pulsed laser.

View Article and Find Full Text PDF