Publications by authors named "Tami L Lasseter"

We report the direct covalent functionalization of silicon and diamond surfaces with short ethylene glycol (EG) oligomers via photochemical reaction of the hydrogen-terminated surfaces with terminal vinyl groups of the oligomers, and the use of these monolayers to control protein binding at surfaces. Photochemical modification of Si(111) and polycrystalline diamond surfaces produces EG monolayers linked via Si-C bond formation (silicon) or C-C bond formation (diamond). X-ray photoelectron spectroscopy was used to characterize the monolayer composition.

View Article and Find Full Text PDF

Frequency-dependent electrochemical impedance spectroscopy has been used to characterize the changes in electrical response that accompany specific binding of a protein to its substrate, using the biotin-avidin system as a model. Our results show that avidin, at concentrations in the nanomolar range, can be detected electrically in a completely label-free manner under conditions of zero average current flow and without the use of any auxiliary redox agents. Impedance measurements performed on biotin-modified surfaces of gold, glassy carbon, and silicon were obtained over a wide frequency range, from 5 mHz to 1 MHz.

View Article and Find Full Text PDF

Diamond, because of its electrical and chemical properties, may be a suitable material for integrated sensing and signal processing. But methods to control chemical or biological modifications on diamond surfaces have not been established. Here, we show that nanocrystalline diamond thin-films covalently modified with DNA oligonucleotides provide an extremely stable, highly selective platform in subsequent surface hybridization processes.

View Article and Find Full Text PDF