Publications by authors named "Tamer U"

Bacterial bloodstream infections cause high morbidity and mortality. Although bacteria can be detected by various methods, culture methods are often used for the detection of live, accurate, reproducible, and selective bacterial identification. However, the culture method is time-consuming, and clinicians often start treatment immediately due to the long determination time.

View Article and Find Full Text PDF
Article Synopsis
  • - Raman spectroscopy is an advanced technique used to analyze the properties of matter, making it valuable for research, especially in cancer studies, where it helps understand gene and protein changes linked to tumor aggressiveness.
  • - In breast cancer research, the study focused on the BRCA1 gene, which is challenging to measure using traditional methods due to its size, and employed surface-enhanced Raman spectroscopy (SERS) for precise protein quantification.
  • - The research utilized magnetic nanoparticles to isolate the target protein and created a calibration curve that correlated Raman intensity with BRCA1 concentration, enabling accurate determination of protein levels in tissue samples.
View Article and Find Full Text PDF

A new, sensitive, and cost-effective lab-on-paper-based immunosensor was designed based on electrochemical impedance spectroscopy (EIS) for the detection of exosomes. EIS was selected as the determination method since there was a surface blockage in electron transfer by binding the exosomes to the transducer. Briefly, the carbon working electrode (WE) on the paper electrode (PE) was modified with gold particles (AuPs@PE) and then conjugated with anti-CD9 (Anti-CD9/AuPs@PE) for the detection of exosomes.

View Article and Find Full Text PDF

The analysis of substances and samples obtained from a crime scene is very important in solving forensic cases. To determine the variables involved in a crime and to expedite the investigation process, the rapid analysis of body fluids in small quantities and within environments containing diverse components is particularly necessary. For this reason, it is of great importance to analyze biological fluids with rapid, noncontaminating, nondestructive, low-cost, and accurate techniques.

View Article and Find Full Text PDF

This study presents a simple, fast, and sensitive label-free sensing assay for the precise enumeration of modeled pathogenic Escherichia coli K12 (E. coli K12) bacteria for the first time. The method employs the covalent binding bacteriophage technique on the surface of a reversible addition-fragmentation chain transfer (RAFT) polymer film.

View Article and Find Full Text PDF

Various body fluids such as blood, semen, vaginal secretions, and saliva are frequently encountered at crime scene. In cases of sexual assault, semen stains are one of the most reliable evidence of biological origin. In this study, our objective was to develop a method for estimating the time since deposition of semen stains on five different fabric types using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy, with a focus on a time frame of up to 8 weeks.

View Article and Find Full Text PDF

Bacterial pathogens in water, food, and the environment are spreading diseases around the world. According to a World Health Organization (WHO) report, waterborne pathogens pose the most significant global health risks to living organisms, including humans and animals. Conventional bacterial detection approaches such as colony counting, microscopic analysis, biochemical analysis, and molecular analysis are expensive, time-consuming, less sensitive, and require a pre-enrichment step.

View Article and Find Full Text PDF

Electrochemical sensing is ubiquitous in a number of fields ranging from biosensing, to environmental monitoring through to food safety and battery or corrosion characterisation. Whereas conventional potentiostats are ideal to develop assays in laboratory settings, they are in general, not well-suited for field work due to their size and power requirements. To address this need, a number of portable battery-operated potentiostats have been proposed over the years.

View Article and Find Full Text PDF

Since patients with triple-negative breast cancer do not respond to hormone therapy, the main treatment method is the combination of chemotherapy and radiotherapy. Because the DNA of the tumor cell is the target in both some chemotherapeutics and radiotherapy, problems may occur in individuals with a high DNA repair pathway. It is suggested that high expression of the Tip60 gene, which has an important role in repairing DNA damage, will increase the repair of DNA double-strand breaks in tumor cells, especially during radiotherapy treatment, thus reducing the response to treatment and adversely affecting treatment.

View Article and Find Full Text PDF

Microfluidics enables the integration of whole protocols performed in a laboratory, including sample loading, reaction, extraction, and measurement steps on a single system, which offers significant advantages thanks to small-scale operation combined with precise fluid control. These include providing efficient transportation mechanisms and immobilization, reduced sample and reagent volumes, fast analysis and response times, lower power requirements, lower cost and disposability, improved portability and sensitivity, and greater integration and automation capability. Immunoassay is a specific bioanalytical method based on the interaction of antigens and antibodies, which is utilized to detect bacteria, viruses, proteins, and small molecules in several areas such as biopharmaceutical analysis, environmental analysis, food safety, and clinical diagnostics.

View Article and Find Full Text PDF

Introduction: Blood and semen stains are the most common biological stains encountered at crime scenes. The washing of biological stains is a common application that perpetrators use to spoil the crime scene. With a structured experiment approach, this study aims to investigate the effects of washing with various chemicals on the ATR-FTIR detection of blood and semen stains on cotton.

View Article and Find Full Text PDF

Herein, a unique electrochemiluminescence (ECL) sensor combined with a paper electrode was proposed for the detection of phenylalanine (L-Phe) in blood samples. The L-Phe detection was performed by converting L-Phe into ammonia using phenylalanine ammonia-lyase (PAL) enzyme and the ECL signal of Ru(bpy) was produced in combination with ammonia as a co-reactant. In this report, we used AuNP decorated paper electrodes to obtain the ECL signal of Ru-(bpy) in the presence of NH.

View Article and Find Full Text PDF

Pathogen detection is still a challenging issue for public health, especially in food products. A selective preconcentration step is also necessary if the target pathogen concentration is very low or if the sample volume is limited in the analysis. Plate counting (24-48 h) methods should be replaced by novel biosensor systems as an alternative reliable pathogen detection technique.

View Article and Find Full Text PDF

The choice of polymer and its compatibility with drug used determine the fate of nanoparticle in therapy. There has been limited sources about effect of resomer differentiation in nanoparticle related with physical and chemical properties and also biological activities of product. Therefore, we aimed to formulate docetaxel-loaded polylactic-co-glycolic acid nanoparticles with different molecular weights (Resomer 502 and 504) and terminal groups (Resomer 502H and 504H) and to investigate the effect of these resomers on nanoparticle character, prostate cancer, and healthy cells.

View Article and Find Full Text PDF

Physiological and endocrine maintenance of a normal human growth hormone (hGH) concentration is crucial for growth, development, and a number of essential biological processes. In this study, we describe the preparation and characterization of magnetic nanoparticles coated with a gold shell (MNPs-Au). The optimal surface concentration of monoclonal anti-hGH antibodies (m-anti-hGH) on magnetic nanoparticles, as well as conditions that decrease non-specific interactions during the magneto-immunoassay, were elaborated.

View Article and Find Full Text PDF

Salmonella, as a common foodborne pathogen in dairy products, poses a great threat to human health. We studied a new detection method based on quantum dots (QD). A fluorescent biosensor with multiple fluorescent signal amplification based on a streptavidin (SA) biotin system and the polyamino linear polymer poly-l-lysine (PLL) were established to detect Salmonella in milk.

View Article and Find Full Text PDF

Paper-based electrodes modified with molybdenum disulfide (MoS) in the form of bulk crystals or exfoliated nanosheets were developed and used as a biosensing platform for the impedimetric detection of miRNAs (miRNA-155 and miRNA-21) related to early diagnosis of lung cancer. For this purpose, MoS crystals or nanosheets were used for the modification of the working electrode area of paper-based platform for the first time in this study. The proposed assay offers sensitive and selective detection of microRNAs by electrochemical impedance spectroscopy (EIS) technique.

View Article and Find Full Text PDF

Selective and sensitive detection of cancer biomarkers in serum samples is critical for early diagnosis of cancer. Prostate specific antigen is an important biomarker of prostate cancer, which ranks high among cancer-related deaths of men over 50 years old. Herein, a novel analytical method was introduced for detection of PSA by combining high selectivity of molecularly-imprinted polymers and high sensitivity of surface-enhanced Raman spectroscopy (SERS).

View Article and Find Full Text PDF

In this study, a new surface-enhanced Raman scattering (SERS)-based method has been developed for the detection of plasmin activity. Firstly, different peptide sequences, which are specific to plasmin, were examined. Then, SERS substrates were prepared by chosen peptide substrate.

View Article and Find Full Text PDF

In this study, a capillary driven microfluidic chip-based immunoassay was developed for the determination of Human Chorionic Gonadotropin (hCG) protein, which is prohibited by the World Anti-Doping Agency (WADA). Here, we used antibody modified magnetic metal organic framework nanoparticles (MMOFs) as a capture prob in urine sample. MMOF captured hCG was transferred in a capillary driven microfluidic chip consisting of four chambers, and the interaction of MMOF with gold nanorods labelled with 5,5'-Dithiobis-(2-nitrobenzoic acid) (DTNB) as a Raman label was carried out in the capillary driven microfluidic chip.

View Article and Find Full Text PDF

Paper-based biosensors are considered simple and cost-efficient sensing platforms for analytical tests and diagnostics. Here, a paper-based electrochemical biosensor was developed for the rapid and sensitive detection of microRNAs (miRNA-155 and miRNA-21) related to early diagnosis of lung cancer. Hydrophobic barriers to creating electrode areas were manufactured by wax printing, whereas a three-electrode system was fabricated by a simple stencil approach.

View Article and Find Full Text PDF

In this study, the analytical performance of bacteriophages for Salmonella Enteritidis was investigated using lateral flow assay (LFA) technique. The analytical performance characteristics of bacteriophages were compared with antibodies which are regularly used as analyte-specific agents in the lateral flow immunoassay test strip. Bacteriophages could be an alternative analyte-specific agents to antibodies in lateral flow assay testing of bacteria since they offer comparable sensitivity, specificity, and accuracy.

View Article and Find Full Text PDF

In the present work, a paper-based electrode assemble was developed and implemented to detect target microRNA 155 (miRNA 155) via electrochemical impedance spectroscopy (EIS) measurements. In this concept, gold nanoparticles (AuNPs) modified paper based electrode assemble system (AuNP-PE) was designed, and characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and EIS measurements. The impedimetric detection of miRNA 155 was performed by measuring the fractional change at the charge transfer resistance (R).

View Article and Find Full Text PDF

In this study, we present a disposable and inexpensive paper-like gold nanoparticle-embedded cellulose nanofibril substrate for the rapid enumeration of Escherichia coli (E. coli) using surface-enhanced Raman scattering (SERS) mapping. A disposable SERS substrate was simply constructed by mixing CNF and gold chloride solution at 120 °C in a water bath.

View Article and Find Full Text PDF

Multiplex detection and quantification of bacteria in water by using portable devices are particularly essential in low and middle-income countries where access to clean drinking water is limited. Addressing this crucial problem, we report a highly sensitive immunoassay sensor system utilizing the fluorescence technique with magnetic nanoparticles (MNPs) to separate target bacteria and two different types of quantum dots (CdTe and Ni doped CdTe QDs) incorporated into a passive microfluidic chip to transport and to form sandwich complexes for the detection of two target bacteria, namely Escherichia coli (E. coli) and Salmonella enteritidis (S.

View Article and Find Full Text PDF