Publications by authors named "Tamer Inanc"

Warfarin is a challenging drug to administer due to the narrow therapeutic index of the International Normalized Ratio (INR), the inter- and intra-variability of patients, limited clinical data, genetics, and the effects of other medications. To predict the optimal warfarin dosage in the presence of the aforementioned challenges, we present an adaptive individualized modeling framework based on model (In)validation and semi-blind robust system identification. The model (In)validation technique adapts the identified individualized patient model according to the change in the patient's status to ensure the model's suitability for prediction and controller design.

View Article and Find Full Text PDF

Warfarin belongs to a medication class called anticoagulants or blood thinners. It is used for the treatment to prevent blood clots from forming or growing larger. Patients with venous thrombosis, pulmonary embolism, or who have suffered a heart attack, have an irregular heartbeat, or prosthetic heart valves are prescribed with warfarin.

View Article and Find Full Text PDF

Administration of drugs requires sophisticated methods to determine the drug quantity for optimal results, and it has been a challenging task for the number of diseases. To solve these challenges, in this paper, we present the semi-blind robust model identification technique to find individualized patient models using the minimum number of clinically acquired patient-specific data to determine optimal drug dosage. To ensure the usability of these models for dosage predictability and controller design, the model (In)validation technique is also investigated.

View Article and Find Full Text PDF

This paper presents an efficient technique to reduce the inference cost of deep and/or wide convolutional neural network models by pruning redundant features (or filters). Previous studies have shown that over-sized deep neural network models tend to produce a lot of redundant features that are either shifted version of one another or are very similar and show little or no variations, thus resulting in filtering redundancy. We propose to prune these redundant features along with their related feature maps according to their relative cosine distances in the feature space, thus leading to smaller networks with reduced post-training inference computational costs and competitive performance.

View Article and Find Full Text PDF

This paper proposes a new and efficient technique to regularize the neural network in the context of deep learning using correlations among features. Previous studies have shown that oversized deep neural network models tend to produce a lot of redundant features that are either the shifted version of one another or are very similar and show little or no variations, thus resulting in redundant filtering. We propose a way to address this problem and show that such redundancy can be avoided using regularization and adaptive feature dropout mechanism.

View Article and Find Full Text PDF

Background And Objective: Anemia is a common comorbidity in patients with chronic kidney disease (CKD) and is frequently associated with decreased physical component of quality of life, as well as adverse cardiovascular events. Current treatment methods for renal anemia are mostly population-based approaches treating individual patients with a one-size-fits-all model. However, FDA recommendations stipulate individualized anemia treatment with precise control of the hemoglobin concentration and minimal drug utilization.

View Article and Find Full Text PDF

The universal sequel to chronic kidney condition (CKD) is anemia. Patients of anemia have kidneys that are incapable of performing certain basic functions such as sensing of oxygen levels to secrete erythropoietin when red blood cell counts are low. Under such conditions, external administration of human recombinant erythropoietin (EPO) is administered as alternative to improve conditions of CKD patients by increasing their hemoglobin (Hb) levels to a given therapeutic range.

View Article and Find Full Text PDF

The survey outlines and compares popular computational techniques for quantitative description of shapes of major structural parts of the human brain, including medial axis and skeletal analysis, geodesic distances, Procrustes analysis, deformable models, spherical harmonics, and deformation morphometry, as well as other less widely used techniques. Their advantages, drawbacks, and emerging trends, as well as results of applications, in particular, for computer-aided diagnostics, are discussed.

View Article and Find Full Text PDF