Publications by authors named "Tamer I Mahmoud"

Checkpoint blockade therapies targeting PD-1/PD-L1 and CTLA-4 are clinically successful but also evoke adverse events due to systemic T-cell activation. We engineered a bispecific, mAb targeting CD28 homolog (CD28H), a newly identified B7 family receptor that is constitutively expressed on T and natural killer (NK) cells, with a PD-L1 antibody to potentiate tumor-specific immune responses. The bispecific antibody led to T-cell costimulation, induced NK-cell cytotoxicity of PD-L1-expressing tumor cells, and activated tissue-resident memory CD8 T cells.

View Article and Find Full Text PDF

Autoantibodies can be present years to decades before the onset of disease manifestations in autoimmunity. This finding suggests that the initial autoimmune trigger involves a peripheral lymphoid component, which ultimately drives disease pathology in local tissues later in life. We show that Sjögren's syndrome manifestations that develop in aged NOD.

View Article and Find Full Text PDF

Ectopic follicles are non-encapsulated organized lymphoid structures that form at sites of inflammation and presumably contribute to the activation and differentiation of cells with autoreactive potential within target tissues. As such, directed targeting of ectopic follicles in settings of autoimmunity may provide a means to specifically inhibit the activation of autoreactive cells without impairing protective immune responses ongoing in peripheral lymphoid tissues. NOD·H2h4 mice are a non-diabetic strain of NOD mice which develop a Sjögren's syndrome-like disease which includes the formation of ectopic follicles in the salivary gland and characteristic Sjögren's autoantibodies.

View Article and Find Full Text PDF

Selection and physiological production of protective natural antibodies (NAbs) have been associated with exposure to endogenous antigens. The extent to which this association depends on germline NAb sequence is uncertain. Here we show that alterations in germline D(H) sequence can sever the association between the production of self-reactive NAbs and NAbs that afford protection against a pathogen.

View Article and Find Full Text PDF

Many bacteria-associated polysaccharides induce long-lived Ab responses that protect against pathogenic microorganisms. The maintenance of polysaccharide-specific Ab titers may be due to long-lived plasma cells or ongoing Ag-driven B cell activation due to polysaccharide persistence. BALB/c and V(H)J558.

View Article and Find Full Text PDF

Anti-polysaccharide Ab responses in mice are often oligoclonal, and the mechanisms involved in Ag-specific clone production and selection remain poorly understood. We evaluated the relative contribution of D(H) germline content versus N nucleotide addition in a classic oligoclonal, T-independent Ab response (α 1→3 dextran [DEX]) by challenging adult TdT-sufficient (TdT(+/+)) and TdT-deficient (TdT(-/-)) gene-targeted mice, limited to the use of a single D(H) gene segment (D-limited mice), with Enterobacter cloacae. D-limited mice achieved anti-DEX-specific levels of Abs that were broadly comparable to those of wild-type (WT) BALB/c mice.

View Article and Find Full Text PDF

An understanding of Ab responses to polysaccharides associated with pathogenic microorganisms is of importance for improving vaccine design, especially in neonates that respond poorly to these types of Ags. In this study, we have investigated the role of the lymphoid-specific enzyme TdT in generating B cell clones responsive to alpha-1,3 dextran (DEX). TdT is a DNA polymerase that plays a major role in generating diversity of lymphocyte AgRs during V(D)J recombination.

View Article and Find Full Text PDF