Cognitive models that represent individuals provide many benefits for understanding the full range of human behavior. One way in which individual differences emerge is through differences in knowledge. In dynamic situations, where decisions are made from experience, models built upon a theory of experiential choice (instance-based learning theory; IBLT) can provide accurate predictions of individual human learning and adaptivity to changing environments.
View Article and Find Full Text PDFBackground: Digital health programs provide individualized support to patients with chronic diseases and their effectiveness is measured by the extent to which patients achieve target individual clinical outcomes and the program's ability to sustain patient engagement. However, patient dropout and inequitable intervention delivery strategies, which may unintentionally penalize certain patient subgroups, represent challenges to maximizing effectiveness. Therefore, methodologies that optimize the balance between success factors (achievement of target clinical outcomes and sustained engagement) equitably would be desirable, particularly when there are resource constraints.
View Article and Find Full Text PDFBackground: Youth experiencing homelessness (YEH) are at elevated risk of HIV/AIDS and disproportionately identify as racial, ethnic, sexual, and gender minorities. We developed a new peer change agent (PCA) HIV prevention intervention with 3 arms: (1) an arm using an artificial intelligence (AI) planning algorithm to select PCAs; (2) a popularity arm, the standard PCA approach, operationalized as highest degree centrality (DC); and (3) an observation-only comparison group.
Setting: A total of 713 YEH were recruited from 3 drop-in centers in Los Angeles, CA.
The Mumbai Suburban Railways, , are a key transit infrastructure of the city and is crucial for resuming normal economic activity. Due to high density during transit, the potential risk of disease transmission is high, and the government has taken a wait and see approach to resume normal operations. To reduce disease transmission, policymakers can enforce reduced crowding and mandate wearing of masks.
View Article and Find Full Text PDFDisease dynamics, human mobility, and public policies co-evolve during a pandemic such as COVID-19. Understanding dynamic human mobility changes and spatial interaction patterns are crucial for understanding and forecasting COVID-19 dynamics. We introduce a novel graph-based neural network(GNN) to incorporate global aggregated mobility flows for a better understanding of the impact of human mobility on COVID-19 dynamics as well as better forecasting of disease dynamics.
View Article and Find Full Text PDFThe COVID-19 pandemic has created a public health crisis. Because SARS-CoV-2 can spread from individuals with presymptomatic, symptomatic, and asymptomatic infections, the reopening of societies and the control of virus spread will be facilitated by robust population screening, for which virus testing will often be central. After infection, individuals undergo a period of incubation during which viral titers are too low to detect, followed by exponential viral growth, leading to peak viral load and infectiousness and ending with declining titers and clearance.
View Article and Find Full Text PDFAs the COVID-19 pandemic continues, formulating targeted policy interventions that are informed by differential severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission dynamics will be of vital importance to national and regional governments. We develop an individual-level model for SARS-CoV-2 transmission that accounts for location-dependent distributions of age, household structure, and comorbidities. We use these distributions together with age-stratified contact matrices to instantiate specific models for Hubei, China; Lombardy, Italy; and New York City, United States.
View Article and Find Full Text PDFRecent research in cybersecurity has begun to develop active defense strategies using game-theoretic optimization of the allocation of limited defenses combined with deceptive signaling. These algorithms assume rational human behavior. However, human behavior in an online game designed to simulate an insider attack scenario shows that humans, playing the role of attackers, attack far more often than predicted under perfect rationality.
View Article and Find Full Text PDFThis work quantifies mobility changes observed during the different phases of the pandemic world-wide at multiple resolutions -- county, state, country -- using an anonymized aggregate mobility map that captures population flows between geographic cells of size 5 km . As we overlay the global mobility map with epidemic incidence curves and dates of government interventions, we observe that as case counts rose, mobility fell and has since then seen a slow but steady increase in flows. Further, in order to understand mixing within a region, we propose a new metric to quantify the effect of social distancing on the basis of mobility.
View Article and Find Full Text PDF