Rodents serve as an important model for examining both individual and collective behavior. Dominance within rodent social structures can determine access to critical resources, such as food and mating opportunities. Yet, many aspects of the intricate interplay between individual behaviors and the resulting group social hierarchy, especially its evolution over time, remain unexplored.
View Article and Find Full Text PDFTissue morphogenesis and patterning during development involve the segregation of cell types. Segregation is driven by differential tissue surface tensions generated by cell types through controlling cell-cell contact formation by regulating adhesion and actomyosin contractility-based cellular cortical tensions. We use vertebrate tissue cell types and zebrafish germ layer progenitors as in vitro models of 3-dimensional heterotypic segregation and developed a quantitative analysis of their dynamics based on 3D time-lapse microscopy.
View Article and Find Full Text PDFLocating unpredictable but essential resources is a task that all mobile animals have to perform in order to survive and reproduce. Research on search strategies has focused largely on independent individuals [1-3], but many organisms display collective behaviors, including during group search and foraging [4-6]. One classical experimental search task, informing studies of navigation, memory, and learning, is the location of a reward in a confined, complex maze setting [7, 8].
View Article and Find Full Text PDFThe living world is full of cohesive collectives that have evolved to move together with high efficiency. Schools of fish or flocks of birds maintain their global direction despite significant noise perturbing the individuals, yet they are capable of performing abrupt collective turns when relevant agitation alters the state of a few members. Ruling local fluctuations out of global movement leads to persistence and requires overdamped interaction dynamics, while propagating swift turns throughout the group leads to responsivity and requires underdamped interaction dynamics.
View Article and Find Full Text PDFWe address a fundamental issue of collective motion of aerial robots: how to ensure that large flocks of autonomous drones seamlessly navigate in confined spaces. The numerous existing flocking models are rarely tested on actual hardware because they typically neglect some crucial aspects of multirobot systems. Constrained motion and communication capabilities, delays, perturbations, or the presence of barriers should be modeled and treated explicitly because they have large effects on collective behavior during the cooperation of real agents.
View Article and Find Full Text PDFThe question of why and how animal and human groups form temporarily stable hierarchical organizations has long been a great challenge from the point of quantitative interpretations. The prevailing observation/consensus is that a hierarchical social or technological structure is optimal considering a variety of aspects. Here we introduce a simple quantitative interpretation of this situation using a statistical mechanics-type approach.
View Article and Find Full Text PDFDuring embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage.
View Article and Find Full Text PDFObjective: Relapsing polychondritis (RP) is a rare autoimmune inflammatory disease that attacks mainly cartilaginous structures or causes serious damage in proteoglycan-rich structures (the eyes, heart, blood vessels, inner ear). This study shows results regarding the epidemiology, progression, and associations of this highly variable disease by collecting all cases from a 124-million-person-year Central European nationwide cohort.
Methods: We used the Hungarian Health Care Database to identify all persons with possible RP infection.
A key question in collective behavior is how individual differences structure animal groups, affect the flow of information, and give some group members greater weight in decisions. Depending on what factors contribute to leadership, despotic decisions could either improve decision accuracy or interfere with swarm intelligence. The mechanisms behind leadership are therefore important for understanding its functional significance.
View Article and Find Full Text PDFA number of novel experimental and theoretical results have recently been obtained on active soft matter, demonstrating the various interesting universal and anomalous features of this kind of driven systems. Here we consider the adhesion difference-driven segregation of actively moving units, a fundamental but still poorly explored aspect of collective motility. In particular, we propose a model in which particles have a tendency to adhere through a mechanism which makes them both stay in touch and synchronize their direction of motion - but the interaction is limited to particles of the same kind.
View Article and Find Full Text PDFOutside Africa, the global phylogeography of HIV is characterized by compartmentalized local epidemics that are typically dominated by a single subtype, which indicates strong founder effects. We hypothesized that the competition of viral strains at the epidemic level may involve an advantage of the resident strain that was the first to colonize a population. Such an effect would slow down the invasion of new strains, and thus also the diversification of the epidemic.
View Article and Find Full Text PDFAnimals foraging alone are hypothesized to optimize the encounter rates with resources through Lévy walks. However, the issue of how the interactions between multiple foragers influence their search efficiency is still not completely understood. To address this, we consider a model to study the optimal strategy for a group of foragers searching for targets distributed heterogeneously.
View Article and Find Full Text PDFSwarming or collective motion of living entities is one of the most common and spectacular manifestations of living systems that have been extensively studied in recent years. A number of general principles have been established. The interactions at the level of cells are quite different from those among individual animals, therefore the study of collective motion of cells is likely to reveal some specific important features which we plan to overview in this paper.
View Article and Find Full Text PDFThe mechanisms that underlie fascinating inter-individual interactions among animal groups have attracted increasing attention from biologists, physicists, and system scientists. There are two well-known types of interaction patterns: hierarchical and egalitarian. In the former type, individuals follow their leaders, whereas they follow their neighbors in the latter.
View Article and Find Full Text PDFAnimal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms.
View Article and Find Full Text PDFPower grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure.
View Article and Find Full Text PDFTagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics.
View Article and Find Full Text PDFHierarchy is one of the most conspicuous features of numerous natural, technological and social systems. The underlying structures are typically complex and their most relevant organizational principle is the ordering of the ties among the units they are made of according to a network displaying hierarchical features. In spite of the abundant presence of hierarchy no quantitative theoretical interpretation of the origins of a multi-level, knowledge-based social network exists.
View Article and Find Full Text PDFMonitoring and describing the physical movements and body postures of animals is one of the most fundamental tasks of ethology. The more precise the observations are the more sophisticated the interpretations can be about the biology of a certain individual or species. Animal-borne data loggers have recently contributed much to the collection of motion-data from individuals, however, the problem of translating these measurements to distinct behavioural categories to create an ethogram is not overcome yet.
View Article and Find Full Text PDFGroups of people or even robots often face problems they need to solve together. Examples include collectively searching for resources, choosing when and where to invest time and effort, and many more. Although a hierarchical ordering of the relevance of the group members' inputs during collective decision making is abundant, a quantitative demonstration of its origin and advantages using a generic approach has not been described yet.
View Article and Find Full Text PDFHierarchical organization is widespread in the societies of humans and other animals, both in social structure and in decision-making contexts. In the case of collective motion, the majority of case studies report that dominant individuals lead group movements, in agreement with the common conflation of the terms "dominance" and "leadership." From a theoretical perspective, if social relationships influence interactions during collective motion, then social structure could also affect leadership in large, swarm-like groups, such as fish shoals and bird flocks.
View Article and Find Full Text PDFNature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people).
View Article and Find Full Text PDF