Publications by authors named "Tamas Vertesi"

Quantum mechanics imposes limits on the statistics of certain observables. Perhaps the most famous example is the uncertainty principle. Similar trade-offs also exist for the simultaneous violation of multiple Bell inequalities.

View Article and Find Full Text PDF

We consider communication scenarios where one party sends quantum states of known dimensionality D, prepared with an untrusted apparatus, to another, distant party, who probes them with uncharacterized measurement devices. We prove that, for any ensemble of reference pure quantum states, there exists one such prepare-and-measure scenario and a linear functional W on its observed measurement probabilities, such that W can only be maximized if the preparations coincide with the reference states, modulo a unitary or an antiunitary transformation. In other words, prepare-and-measure scenarios allow one to "self-test" arbitrary ensembles of pure quantum states.

View Article and Find Full Text PDF

We address the problem of testing the quantumness of two-dimensional systems in the prepare-and-measure (PM) scenario, using a large number of preparations and a large number of measurement settings, with binary outcome measurements. In this scenario, we introduce constants, which we relate to the Grothendieck constant of order 3. We associate them with the white noise resistance of the prepared qubits and to the critical detection efficiency of the measurements performed.

View Article and Find Full Text PDF

We consider bipartite entangled states that cannot outperform separable states in any linear interferometer. Then, we show that these states can still be more useful metrologically than separable states if several copies of the state are provided or an ancilla is added to the quantum system. We present a general method to find the local Hamiltonian for which a given quantum state performs the best compared to separable states.

View Article and Find Full Text PDF

Self-testing represents the strongest form of certification of a quantum system. Here, we theoretically and experimentally investigate self-testing of nonprojective quantum measurements. That is, how can one certify, from observed data only, that an uncharacterized measurement device implements a desired nonprojective positive-operator valued measure (POVM).

View Article and Find Full Text PDF

We present the first experimental confirmation of the quantum-mechanical prediction of stronger-than-binary correlations. These are correlations that cannot be explained under the assumption that the occurrence of a particular outcome of an n≥3-outcome measurement is due to a two-step process in which, in the first step, some classical mechanism precludes n-2 of the outcomes and, in the second step, a binary measurement generates the outcome. Our experiment uses pairs of photonic qutrits distributed between two laboratories, where randomly chosen three-outcome measurements are performed.

View Article and Find Full Text PDF

We show that multipartite quantum states that have a positive partial transpose with respect to all bipartitions of the particles can outperform separable states in linear interferometers. We introduce a powerful iterative method to find such states. We present some examples for multipartite states and examine the scaling of the precision with the particle number.

View Article and Find Full Text PDF

Quantum measurements on a two-level system can have more than two independent outcomes, and in this case, the measurement cannot be projective. Measurements of this general type are essential to an operational approach to quantum theory, but so far, the nonprojective character of a measurement can only be verified experimentally by already assuming a specific quantum model of parts of the experimental setup. Here, we overcome this restriction by using a device-independent approach.

View Article and Find Full Text PDF

Constructing local hidden variable (LHV) models for entangled quantum states is a fundamental problem, with implications for the foundations of quantum theory and for quantum information processing. It is, however, a challenging problem, as the model should reproduce quantum predictions for all possible local measurements. Here we present a simple method for building LHV models, applicable to any entangled state and considering continuous sets of measurements.

View Article and Find Full Text PDF

In this paper, we investigate the communication cost of reproducing Einstein-Podolsky-Rosen (EPR) steering correlations arising from bipartite quantum systems. We characterize the set of bipartite quantum states which admits a local hidden state model augmented with c bits of classical communication from an untrusted party (Alice) to a trusted party (Bob). In case of one bit of information (c = 1), we show that this set has a nontrivial intersection with the sets admitting a local hidden state and a local hidden variables model for projective measurements.

View Article and Find Full Text PDF

The discovery of postquantum nonlocality, i.e., the existence of nonlocal correlations that are stronger than any quantum correlations but nevertheless consistent with the no-signaling principle, has deepened our understanding of the foundations of quantum theory.

View Article and Find Full Text PDF

We describe a simple method to derive high performance semidefinite programing relaxations for optimizations over complex and real operator algebras in finite dimensional Hilbert spaces. The method is very flexible, easy to program, and allows the user to assess the behavior of finite dimensional quantum systems in a number of interesting setups. We use this method to bound the strength of quantum nonlocality in Bell scenarios where the dimension of the parties is bounded from above.

View Article and Find Full Text PDF

Quantum entanglement has a central role in many areas of physics. To grasp the essence of this phenomenon, it is fundamental to understand how different manifestations of entanglement relate to each other. In 1999, Peres conjectured that Bell nonlocality is equivalent to distillability of entanglement.

View Article and Find Full Text PDF

We investigate the relation between the incompatibility of quantum measurements and quantum nonlocality. We show that a set of measurements is not jointly measurable (i.e.

View Article and Find Full Text PDF

Certifying the entanglement of quantum states with Bell inequalities allows one to guarantee the security of quantum information protocols independently of imperfections in the measuring devices. Here, we present a similar procedure for witnessing entangled measurements, which play a central role in many quantum information tasks. Our procedure is termed semi-device-independent, as it uses uncharacterized quantum preparations of fixed Hilbert space dimension.

View Article and Find Full Text PDF

Self-testing refers to the fact that, in some quantum devices, both states and measurements can be assessed in a black-box scenario, on the sole basis of the observed statistics, i.e., without reference to any prior device calibration.

View Article and Find Full Text PDF

Dimension witnesses allow one to test the dimension of an unknown physical system in a device-independent manner, that is, without placing assumptions about the functioning of the devices used in the experiment. Here we present simple and general dimension witnesses for quantum systems of arbitrary Hilbert space dimension. Our approach is deeply connected to the problem of quantum state discrimination, hence establishing a strong link between these two research topics.

View Article and Find Full Text PDF

Bell tests - the experimental demonstration of a Bell inequality violation - are central to understanding the foundations of quantum mechanics, and are a powerful diagnostic tool for the development of quantum technologies. To date, Bell tests have relied on careful calibration of measurement devices and alignment of a shared reference frame between two parties - both technically demanding tasks. We show that neither of these operations are necessary, violating Bell inequalities (i) with certainty using unaligned, but calibrated, measurement devices, and (ii) with near-certainty using uncalibrated and unaligned devices.

View Article and Find Full Text PDF

We show that the rich structure of multipartite entanglement can be tested following a device-independent approach. Specifically we present Bell inequalities for distinguishing between different types of multipartite entanglement, without placing any assumptions on the measurement devices used in the protocol, in contrast with usual entanglement witnesses. We first address the case of three qubits and present Bell inequalities that can be violated by W states but not by Greenberger-Horne-Zeilinger states, and vice versa.

View Article and Find Full Text PDF

Entanglement and nonlocality are both fundamental aspects of quantum theory, and play a prominent role in quantum information science. The exact relation between entanglement and nonlocality is, however, still poorly understood. Here we make progress in this direction by showing that, contrary to what previous work suggested, quantum nonlocality does not imply entanglement distillability.

View Article and Find Full Text PDF

We find two two-qubit bipartite states ρ1, ρ2 such that arbitrarily many copies of one or the other cannot exhibit nonlocal correlations in a two-setting-two-outcome Bell scenario. However, the bipartite state ρ1 ⊗ ρ2 violates the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [J. F.

View Article and Find Full Text PDF

We show that the detection efficiencies required for closing the detection loophole in Bell tests can be significantly lowered using quantum systems of dimension larger than two. We introduce a series of asymmetric Bell tests for which an efficiency arbitrarily close to 1/N can be tolerated using N-dimensional systems, and a symmetric Bell test for which the efficiency can be lowered down to 61.8% using four-dimensional systems.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondon9ajpp8hmd83vj02jiv0cv87fl9g3j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once