Data obtained from canine cardiac electrophysiology studies are often extrapolated to the human heart. However, it has been previously demonstrated that because of the lower density of its K(+) currents, the human ventricular action potential has a less extensive repolarization reserve. Since the relevance of canine data to the human heart has not yet been fully clarified, the aim of the present study was to determine for the first time the action potentials of undiseased human Purkinje fibres (PFs) and to compare them directly with those of dog PFs.
View Article and Find Full Text PDFChelidonium majus or greater celandine is spread throughout the world, and it is a very common and frequent component of modern phytotherapy. Although C. majus contains alkaloids with remarkable physiological effect, moreover, safety pharmacology properties of this plant are not widely clarified, medications prepared from this plant are often used internally.
View Article and Find Full Text PDFObjectives: The aim of this study was to test the hypothesis that late potentials and fractionated electrogram activity are due to delayed depolarization within the anterior aspects of right ventricular (RV) epicardium in experimental models of Brugada syndrome (BrS).
Background: Clinical reports have demonstrated late potentials on signal-averaged electrocardiography (ECG) recorded in patients with BrS. Recent studies report the appearance of late potentials and fractionated activity on bipolar electrograms recorded in the epicardium of the RV outflow tract in patients with BrS.
Early repolarization pattern in the ECG has been associated with increased risk for ventricular tachycardia/fibrillation (VT/VF), particularly when manifest in inferior leads. This study examines the mechanisms underlying VT/VF in early repolarization syndrome (ERS). Transmembrane action potentials (APs) were simultaneously recorded from 2 epicardial sites and 1 endocardial site of coronary-perfused canine left-ventricular (LV) wedge preparations, together with a pseudo-ECG.
View Article and Find Full Text PDFBackground: Brugada syndrome is an inherited disease associated with vulnerability to ventricular tachycardia and sudden cardiac death in young adults. Milrinone and cilostazol, oral phosphodiesterase (PDE) type III inhibitors, have been shown to increase L-type calcium channel current (ICa) and modestly increase heart rate by elevating the level of intracellular cyclic adenosine monophosphate.
Objective: To examine the effectiveness of these PDE inhibitors to suppress arrhythmogenesis in an experimental model of Brugada syndrome.
Activators of the slow delayed rectifier K⁺ current (IKs) have been suggested as promising tools for suppressing ventricular arrhythmias due to prolongation of repolarization. Recently, L-364,373 (R-L3) was nominated to activate IKs in myocytes from several species; however, in some studies, it failed to activate IKs. One later study suggested opposite modulating effects from the R-L3 enantiomers as a possible explanation for this discrepancy.
View Article and Find Full Text PDFThe species-specific determinants of repolarization are poorly understood. This study compared the contribution of various currents to cardiac repolarization in canine and human ventricle. Conventional microelectrode, whole-cell patch-clamp, molecular biological and mathematical modelling techniques were used.
View Article and Find Full Text PDFBackground: The aim of the present work was to characterize the electrophysiological effects of the non-steroidal anti-inflammatory drug diclofenac and to study the possible proarrhythmic potency of the drug in ventricular muscle.
Methods: Ion currents were recorded using voltage clamp technique in canine single ventricular cells and action potentials were obtained from canine ventricular preparations using microelectrodes. The proarrhythmic potency of the drug was investigated in an anaesthetized rabbit proarrhythmia model.
Enhanced temporal and spatial variability in cardiac repolarization has been related to increased arrhythmic risk both clinically and experimentally. Causes and modulators of variability in repolarization and their implications in arrhythmogenesis are however not well understood. At the ionic level, the slow component of the delayed rectifier potassium current (I(Ks)) is an important determinant of ventricular repolarization.
View Article and Find Full Text PDFBACKGROUND AND PURPOSE Selective hyperpolarization activated, cyclic nucleotide-gated channel (HCN) blockers represent an important therapeutic goal due to the wide distribution and multiple functions of these proteins, representing the molecular correlate of f- and h-current (I(f) or I(h) ). Recently, new compounds able to block differentially the homomeric HCN isoforms expressed in HEK293 have been synthesized. In the present work, the electrophysiological and pharmacological properties of these new HCN blockers were characterized and their activities evaluated on native channels.
View Article and Find Full Text PDFIvabradine is a novel antianginal agent which inhibits the pacemaker current. The effects of ivabradine on maximum rate of depolarization (V(max)), repolarization and spontaneous depolarization have not yet been reported in human isolated cardiac preparations. The same applies to large animals close to human in heart size and spontaneous frequency.
View Article and Find Full Text PDFThe aim of this study was to investigate the cellular electrophysiological effects of ranolazine on action potential characteristics. The experiments were carried out in dog and human cardiac preparations using the conventional microelectrode technique. In dog Purkinje fibres ranolazine produced a concentration- and frequency-dependent depression of the maximum rate of depolarization (V(max)) while action potential duration (APD) was shortened.
View Article and Find Full Text PDF