Background: The application of deep learning (DL) to diagnostic dermatology has been the subject of numerous studies, with some reporting skin lesion classification performance on curated datasets comparable to that of experienced dermatologists. Most skin disease images encountered in clinical settings are macroscopic, without dermoscopic information, and exhibit considerable variability. Further research is necessary to determine the generalizability of DL algorithms across populations and acquisition settings.
View Article and Find Full Text PDFPlasma lipoproteins are important carriers of cholesterol and have been linked strongly to cardiovascular disease (CVD). Our study aimed to achieve fine-grained measurements of lipoprotein subpopulations such as low-density lipoprotein (LDL), lipoprotein(a) (Lp(a), or remnant lipoproteins (RLP) using electron microscopy combined with machine learning tools from microliter samples of human plasma. In the reported method, lipoproteins were absorbed onto electron microscopy (EM) support films from diluted plasma and embedded in thin films of methyl cellulose (MC) containing mixed metal stains, providing intense edge contrast.
View Article and Find Full Text PDF