The production of syngas (i.e., a mixture of CO and H) via the electrochemical reduction of CO and water can contribute to the green transition of various industrial sectors.
View Article and Find Full Text PDFA medium-throughput screening (MTS) of biomimetic drug metabolite synthesis is developed by using an iron porphyrin catalyst. The microplate method, in combination with HPLC-MS analysis, was shown to be a useful tool for process development and parameter optimization in the production of targeted metabolites and/or oxidation products of forty-three different drug substances. In the case of the biomimetic oxidation of amiodarone, the high quantity and purity of the isolated products enabled detailed HRMS and NMR spectroscopic studies.
View Article and Find Full Text PDFSolvent usage in the pharmaceutical sector accounts for as much as 90 % of the overall mass during manufacturing processes. Consequently, solvent consumption poses significant costs and environmental burdens. Continuous processing, in particular continuous-flow reactors, have great potential for the sustainable production of pharmaceuticals but subsequent downstream processing remains challenging.
View Article and Find Full Text PDFThis paper reports the enantioseparation ability of a pyridino-18-crown-6 ether-based chiral stationary phase [(S,S)-CSP-1]. The enantiomeric discrimination of chiral stationary phase (S,S)-CSP-1 was evaluated by HPLC using the mixtures of enantiomers of various protonated primary aralkylamines [1-phenylethylamine hydrogen perchlorate (PEA), 2,3-dihydro-1H-inden-1-amine (1-aminoindan), 2,2'-(1,2-diaminoethane-1,2-diyl) diphenol (HPEN)] and perchlorate salts of α-amino acid esters [alanine benzyl ester (Ala-OBn), phenylalanine benzyl ester (Phe-OBn), phenylalanine methyl ester (Phe-OMe), phenylglycine methyl ester (PhGly-OMe), glutamic acid dibenzyl ester (Glu-diOBn), and valine benzyl ester (Val-OBn)]. The best enantioseparation was achieved in the case of PEA.
View Article and Find Full Text PDFThis paper reports a novel method for the preparation of chiral stationary phases (CSPs) using an acridino-18-crown-6 ether selector as a model compound. Chiral stationary phase (R,R)-CSP- 2A: was obtained by in situ continuously recirculating the solution of carboxyl-substituted acridino-18-crown-6 ether (R,R)- 4: , dicyclohexylcarbodiimide and 3-(triethoxysilyl)propylamine through a high-performance liquid chromatography (HPLC) column containing blank silica gel in elevated pressure and temperature. The enantiomer separating ability of chiral stationary phase (R,R)-CSP- 2A: was investigated by HPLC using mixtures of enantiomers of 1-(1-naphthyl)ethylamine hydrogen perchlorate, 1-(2-naphthyl)ethylamine, 1-(4-bromophenyl)ethylamine and 1-(4-nitrophenyl)ethylamine hydrogen chloride.
View Article and Find Full Text PDF