Publications by authors named "Tamas Budi"

Cyclophosphamide, an oxazaphosphorine prodrug is frequently used in treatment of neuroblastoma, which is one of the most prevalent solid organ malignancies in infants and young children. Cytochrome P450 2B6 (CYP2B6) is the major catalyst and CYP2C19 is the minor enzyme in bioactivation and inactivation pathways of cyclophosphamide. CYP-mediated metabolism may contribute to the variable pharmacokinetics of cyclophosphamide and its toxic byproducts leading to insufficient response to the therapy and development of clinically significant side effects.

View Article and Find Full Text PDF

Background: Genetic polymorphisms of drug metabolizing enzymes can substantially modify the pharmacokinetics of a drug and eventually its efficacy or toxicity; however, inferring a patient's drug metabolizing capacity merely from his or her genotype can lead to false prediction. Non-genetic host factors (age, sex, disease states) and environmental factors (nutrition, comedication) can transiently alter the enzyme expression and activities resulting in genotypephenotype mismatch. Although valproic acid is a well-tolerated anticonvulsant, pediatric patients are particularly vulnerable to valproate injury that can be partly attributed to the age-related differences in metabolic pathways.

View Article and Find Full Text PDF

An increased risk of valproate-induced toxicity has been reported in children, particularly in those younger than 2 years of age. Significant variations in valproate pharmacokinetics and shifts in the metabolic pathways towards CYP2C9-dependent metabolism seem to play some role in the age-related differences in the incidence of adverse events. We present the case of a premature patient with moderate hemorrhage in the subependymal region (grade II - intraventricular hemorrhage without ventricular dilatation), several myoclonic episodes in her right upper arm (series of jerks lasting milliseconds), and epileptiform abnormalities on the EEG (localized spike-and-wave in the left frontal region with preserved background activity who was treated with valproate.

View Article and Find Full Text PDF

Aim: Since prominent role in valproate metabolism is assigned to CYP2C9 in pediatric patients, the association between children's CYP2C9-status and serum valproate concentrations or dose-requirements was evaluated.

Materials & Methods: The contribution of CYP2C9 genotype and CYP2C9 expression in children (n = 50, Caucasian) with epilepsy to valproate pharmacokinetics was analyzed.

Results: Valproate concentrations were significantly lower in normal expressers with CYP2C9*1/*1 than in low expressers or in patients carrying polymorphic CYP2C9 alleles.

View Article and Find Full Text PDF

Objectives: Valproic acid (VPA)-induced adverse effects, which are sometimes serious in children, can be associated with alterations in VPA metabolism. VPA-evoked toxicity is attributed to both the parent compound and its unsaturated metabolites, primarily formed by the cytochrome P450 (CYP)2C9 enzyme. Thus, patients' CYP2C9-status may account for the predisposition to adverse reactions, and testing CYP2C9-status may contribute to the improvement and rationalization of VPA therapy in children.

View Article and Find Full Text PDF