This study is on structure and stability of sheetlike conformers of beta-peptides; never seen new foldamers are reported here for the first time. Single- and double-stranded structures are analyzed, and the seeds of large beta-layers and biocompatible nanomaterials are described here. Both the monomeric, HCO-[NH-CH(2)-CH(2)CO](n)-NH(2), and dimeric forms, [HCO-(beta-Ala)(n)-NH(2)](2) n = 3 and 4, of oligo-beta-alanine supramolecular complexes are evaluated by using an adequate level of theory M052X/6-31G(d) for peptides of this size.
View Article and Find Full Text PDFThe infrared spectra of two model beta-peptides, N-acetyl-3-aminopropionic acid-N'-methylamide (Ac-beta-HGly-NHMe) and N-acetyl-3-aminobutanoic acid-N'-methylamide (Ac-beta-HAla-NHMe), have been recorded in low-temperature Ar and Kr matrixes. The spectra were assigned by the help of electronic structure calculations. The analysis of spectra, in line with the theoretical predictions, revealed that both biocompatible peptide building blocks have a single dominant backbone conformer.
View Article and Find Full Text PDFSelf-assembling peptide-based nanotubes are among the most investigated bioactive compounds as a result of their numerous potential applications as novel biomaterials. To support rational bottom-up design of such artificial nanosystems, here we investigate structural and energetic properties of various sheet-derived nanotubes. We carried out high level quantum chemical calculations on large models, composed of up to 32 amino acids, and characterized structures from extended beta-sheets to the molecular framework of beta-barrel proteins.
View Article and Find Full Text PDFA combined but independently applied NMR and QM procedure has been used to investigate the conformational properties of the exchangeable hydroxyl protons of polyalcohols. In this study, to demonstrate the applicability of such a strategy, we investigated a simple monosaccharide, i.e.
View Article and Find Full Text PDFSince secondary structure elements are known to play a key role in stabilizing the 3D-fold of proteins for the design of non-natural proteins composed of beta-amino acid residues, the construction of suitable secondary structural elements is mandatory. Folding analogues of alpha-helices and beta-strands of beta-polypeptides were already described (Chem. Biodiversity 2004, 1, 1111 (1)).
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2007
The inhibitory gamma-aminobutyric acid transporter subtype 1 (GAT1) maintains low resting synaptic GABA level, and is a potential target for antiepileptic drugs. Here we report a high scored binding mode that associates GABA with gating in a homology model of the human GAT1. Docking and molecular dynamics calculations recognize the amino function of GABA in the H-bonding state favoring TM1 and TM8 helix residues Y60 and S396, respectively.
View Article and Find Full Text PDFBecause of their great flexibility and strength resistance, both spider silks and silkworm silks are of increasing scientific and commercial interest. Despite numerous spectroscopic and theoretical studies, several structural properties at the atomic level have yet to be identified. The present theoretical investigation focuses on these issues by studying three silk-like model peptides: (AG)(64), [(AG)(4)EG](16), and [(AG)(4)PEG](16), using a Lego-type approach to construct these polypeptides.
View Article and Find Full Text PDFParallel or polar strands of beta-peptides spontaneously form nanotubes of different sizes in a vacuum as determined by ab initio calculations. Stability and conformational features of [CH3CO-(beta-Ala)k-NHCH3]l (1 < or = k < or = 4, 2 < or = l < or = 4) models were computed at different levels of theory (e.g.
View Article and Find Full Text PDFNanofibers, nanofilms and nanotubes constructed of one to four strands of oligo-alpha- and oligo-beta-peptides were obtained by using carefully selected building units. Lego-type approaches based on thermoneutral isodesmic reactions can be used to reconstruct the total energies of both linear and tubular periodic nanostructures with acceptable accuracy. Total energies of several different nanostructures were accurately determined with errors typically falling in the subchemical range.
View Article and Find Full Text PDFIntrinsic conformational characteristics of beta-peptides built up from simple achiral and chiral beta-amino acid residues (i.e., HCO-beta-Ala-NH2, HCO-beta-Abu-NH2) were studied using quantum chemical calculations and 1H-NMR spectroscopy.
View Article and Find Full Text PDFThe full conformational space was explored for an achiral and two chiral beta-peptide models: namely For-beta-Ala-NH2, For-beta-Abu-NH2, and For-beta-Aib-NH2. Stability and conformational properties of all three model systems were computed at different levels of theory: RHF/3-21G, B3LYP/6-311++G(d,p)//RHF/3-21G, B3LYP/6-311++G(d,p), MP2//B3LYP/6-311++G(d,p), CCSD//B3LYP/6-311++G(d,p), and CCSD(T)//B3LYP/6-311++G(d,p). In addition, ab initio E = E(phi, micro, psi) potential energy hypersurfaces of all three models were determined, and their topologies were analyzed to determine the inherent flexibility properties of these beta-peptide models.
View Article and Find Full Text PDF