The negative membrane potential within bacterial cells is crucial in various essential cellular processes. Sustaining a hyperpolarised membrane could offer a novel strategy to combat antimicrobial resistance. However, it remains uncertain which molecules are responsible for inducing hyperpolarization and what the underlying molecular mechanisms are.
View Article and Find Full Text PDFCurrent methods for proteomimetic engineering rely on structure-based design. Here we describe a design strategy that allows the construction of proteomimetics against challenging targets without a priori characterization of the target surface. Our approach employs (i) a 100-membered photoreactive foldamer library, the members of which act as local surface mimetics, and (ii) the subsequent affinity maturation of the primary hits using systems chemistry.
View Article and Find Full Text PDFThe interaction between the intrinsically disordered transcription factor HIF-1α and the coactivator proteins p300/CBP is essential in the fast response to low oxygenation. The negative feedback regulator, CITED2, switches off the hypoxic response through a very efficient irreversible mechanism. The negative cooperativity with HIF-1α relies on the formation of a ternary intermediate that leads to allosteric structural changes in p300/CBP, in which the cooperative folding/binding of the CITED2 sequence motifs plays a key role.
View Article and Find Full Text PDFSARS-CoV-2 and its variants are crossing the immunity barrier induced through vaccination. Recent Omicron sub-variants are highly transmissible and have a low mortality rate. Despite the low severity of Omicron variants, these new variants are known to cause acute post-infectious syndromes.
View Article and Find Full Text PDFThe concept of chemically evolvable replicators is central to abiogenesis. Chemical evolvability requires three essential components: energy-harvesting mechanisms for nonequilibrium dissipation, kinetically asymmetric replication and decomposition pathways, and structure-dependent selective templating in the autocatalytic cycles. We observed a UVA light-fueled chemical system displaying sequence-dependent replication and replicator decomposition.
View Article and Find Full Text PDFSingle-stranded DNA-binding protein (SSB) is a bacterial interaction hub and an appealing target for antimicrobial therapy. Understanding the structural adaptation of the disordered SSB C-terminus (SSB-Ct) to DNA metabolizing enzymes (e.g.
View Article and Find Full Text PDFOligonucleotide conjugates are versatile scaffolds that can be applied in DNA-based screening platforms and ligand display or as therapeutics. Several different chemical approaches are available for functionalizing oligonucleotides, which are often carried out on the 5' or 3' end. Modifying oligonucleotides in the middle of the sequence opens the possibility to ligate the conjugates and create DNA strands bearing multiple different ligands.
View Article and Find Full Text PDFCationic antimicrobial peptide PGLa gets into close contact with the anionic bacterial cell membrane, facilitating cross-membrane transport phenomena and membrane disruption depending on the concentration. The mechanisms of action are closely associated with the tilted insertion geometry of PGLa. Therefore, we aimed to understand the interaction between the transmembrane potential (TMP) and the orientation of the membrane-bound PGLa helix.
View Article and Find Full Text PDFS100 proteins are small, typically homodimeric, vertebrate-specific EF-hand proteins that establish Ca-dependent protein-protein interactions in the intra- and extracellular environment and are overexpressed in various pathologies. There are about 20 distinct human S100 proteins with numerous potential partner proteins. Here, we used a quantitative holdup assay to measure affinity profiles of most members of the S100 protein family against a library of chemically synthetized foldamers.
View Article and Find Full Text PDFCell delivery of therapeutic macromolecules and nanoparticles is a critical drug development challenge. Translocation through lipid raft-mediated endocytic mechanisms is being sought, as it can avoid rapid lysosomal degradation. Here, we present a set of short α/β-peptide tags with high affinity to the lipid raft-associated ganglioside GM1.
View Article and Find Full Text PDFThe negative membrane potential of bacterial cells influences crucial cellular processes. Inspired by the molecular scaffold of the antimicrobial peptide PGLa, we have developed antimicrobial foldamers with a computer-guided design strategy. The novel PGLa analogues induce sustained membrane hyperpolarization.
View Article and Find Full Text PDFThe fragment-centric design promises a means to develop complex xenobiotic protein surface mimetics, but it is challenging to find locally biomimetic structures. To address this issue, foldameric local surface mimetic (LSM) libraries were constructed. Protein affinity patterns, ligand promiscuity and protein druggability were evaluated using pull-down data for targets with various interaction tendencies and levels of homology.
View Article and Find Full Text PDFThe incorporation of β-amino acids into a peptide sequence has gained particular attention as β- and α/β-peptides have shown remarkable proteolytic stability, even after a single homologation at the scissile bond. Several peptidases have been shown to cleave such bonds with high specificity but at a much slower rate compared to α-peptide bonds. In this study, a series of analogs of dipeptidyl peptidase-4 (DPP-4) substrate inhibitors were synthesized in order to investigate whether β-amino acid homologation at the scissile bond could be a valid approach to improving peptide stability towards DPP-4 degradation.
View Article and Find Full Text PDFThere is a pressing need to develop ways to deliver therapeutic macromolecules to their intracellular targets. Certain viral and bacterial proteins are readily internalized in functional form through lipid raft-mediated/caveolar endocytosis, but mimicking this process with protein cargoes at therapeutically relevant concentrations is a great challenge. Targeting ganglioside GM1 in the caveolar pits triggers endocytosis.
View Article and Find Full Text PDFThe absorption of drugs is limited by the epithelial barriers of the gastrointestinal tract. One of the strategies to improve drug delivery is the modulation of barrier function by the targeted opening of epithelial tight junctions. In our previous study the 18-mer amphiphilic PN159 peptide was found to be an effective tight junction modulator on intestinal epithelial and blood⁻brain barrier models.
View Article and Find Full Text PDFAlzheimer's disease is one of the most common chronic neurodegenerative disorders. Despite several in vivo and clinical studies, the cause of the disease is poorly understood. Currently, amyloid β (Aβ) peptide and its tendency to assemble into soluble oligomers are known as a main pathogenic event leading to the interruption of synapses and brain degeneration.
View Article and Find Full Text PDFEngineering water-soluble stand-alone β-sandwich mimetics is a current challenge because of the difficulties associated with tailoring long-range interactions. In this work, single cis-(1R,2S)-2-aminocyclohexanecarboxylic acid mutations were introduced into the edge strands of the eight-stranded β-sandwich mimetic structures from the betabellin family. Temperature-dependent NMR and CD measurements, together with thermodynamic analyses, demonstrated that the modified peripheral strands exhibited an irregular and partially disordered structure but were able to exert sufficient shielding on the hydrophobic core to retain the predominantly β-sandwich structure.
View Article and Find Full Text PDFAntimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides.
View Article and Find Full Text PDFProtein-protein interactions stabilized by multiple separate hot spots are highly challenging targets for synthetic scaffolds. Surface-mimetic foldamers bearing multiple recognition segments are promising candidate inhibitors. In this work, a modular bottom-up approach is implemented by identifying short foldameric recognition segments that interact with the independent hot spots, and connecting them through dynamic covalent library (DCL) optimization.
View Article and Find Full Text PDFMimicking the molecular recognition functionality of antibodies is a great challenge. Foldamers are attractive candidates because of their relatively small size and designable interaction surface. This paper describes a sandwich type enzyme-linked immunoassay with a tetravalent β-peptide foldamer helix array as capture element and enzyme labeled tracer antibodies.
View Article and Find Full Text PDFThe neurotransmitter γ-amino butyric acid (GABA) has a fundamental role in CNS function and ionotropic (GABA) receptors that mediate many of the actions of GABA are important therapeutic targets. This study reports the mechanism of action of novel GABA antagonists based on a tricyclic oxazolo-2,3-benzodiazepine scaffold. These compounds are orthosteric antagonists of GABA on heteropentameric GABA receptors of αxβ2γ2 configuration expressed in HEK293 cells.
View Article and Find Full Text PDFFragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins.
View Article and Find Full Text PDFThere is enormous interest toward vanilloid agonists of the pain receptor TRPV1 in analgesic therapy, but the mechanisms of their sensory neuron-blocking effects at high or repeated doses are still a matter of debate. Our results have demonstrated that capsaicin and resiniferatoxin form nanomolar complexes with calmodulin, and competitively inhibit TRPV1-calmodulin interaction. These interactions involve the protein recognition interface of calmodulin, which is responsible for all of the cell-regulatory calmodulin-protein interactions.
View Article and Find Full Text PDFDesign strategies were devised for α/β-peptide foldameric analogues of the antiangiogenic anginex with the goal of mimicking the diverse structural features from the unordered conformation to a folded β-sheet in response to membrane interactions. Structure-activity relationships were investigated in the light of different β-sheet folding levels.
View Article and Find Full Text PDFThe mimicry of protein-sized β-sheet structures with unnatural peptidic sequences (foldamers) is a considerable challenge. In this work, the de novo designed betabellin-14 β-sheet has been used as a template, and α→β residue mutations were carried out in the hydrophobic core (positions 12 and 19). β-Residues with diverse structural properties were utilized: Homologous β(3) -amino acids, (1R,2S)-2-aminocyclopentanecarboxylic acid (ACPC), (1R,2S)-2-aminocyclohexanecarboxylic acid (ACHC), (1R,2S)-2-aminocyclohex-3-enecarboxylic acid (ACEC), and (1S,2S,3R,5S)-2-amino-6,6-dimethylbicyclo[3.
View Article and Find Full Text PDF