Publications by authors named "Tamara Zaobornyj"

The death of myocytes occurs through different pathways, but the rupture of the plasma membrane is the key point in the transition from reversible to irreversible injury. In the myocytes, three major groups of structural proteins that link the extracellular and intracellular milieus and confer structural stability to the cell membrane: the dystrophin-associated protein complex, the vinculin-integrin link, and the spectrin-based submembranous cytoskeleton. The objective was to determine if remote ischemic preconditioning (rIPC) preserves membrane-associated cytoskeletal proteins (dystrophin and β-dystroglycan) through the inhibition of metalloproteinase type 2 (MMP-2) activity.

View Article and Find Full Text PDF

Sildenafil is a phosphodiesterase type 5 inhibitor which confers cardioprotection against myocardial ischaemia/reperfusion (I/R) injury. The aim of this study was to determine if Trx1 participates in cardioprotection exerted by sildenafil in an acute model of I/R, and to evaluate mitochondrial bioenergetics and cellular redox status. Langendorff-perfused hearts from wild type (WT) mice and a dominant negative (DN-Trx1) mutant of Trx1 were assigned to placebo or sildenafil (0.

View Article and Find Full Text PDF

Ischemic heart disease is the main cause of morbidity and mortality in the developed world. Although reperfusion therapies are currently the best treatment for this entity, the restoration of blood flow leads, under certain circumstances, to a form of myocardial damage called reperfusion injury. Several studies have shown that age, sex, smoking, diabetes and dyslipidemia are risk factors for cardiovascular diseases.

View Article and Find Full Text PDF

Mitochondrial dysfunction named complex I syndrome was observed in striatum mitochondria of rotenone treated rats (2 mg rotenone/kg, i. p., for 30 or 60 days) in an animal model of Parkinson disease.

View Article and Find Full Text PDF
Article Synopsis
  • Ischemic postconditioning (PostC) has shown to reduce heart damage in healthy models, but this protective effect may not work in early atherosclerosis due to imbalances in mitochondrial energy and changes in thioredoxin-1 (Trx1).
  • In a study using mice fed a high-fat diet (HFD) to induce early atherosclerotic conditions, results indicated that HFD increased oxidative stress and negated the benefits of PostC on heart injury.
  • Mice on a control diet showed reduced infarct size with PostC, while those on HFD demonstrated increased oxidative damage and impaired mitochondrial function, highlighting how early atherosclerosis disrupts cellular protection mechanisms.
View Article and Find Full Text PDF

Transition from compensated to decompensated left ventricular hypertrophy (LVH) is accompanied by functional and structural changes. Here, the aim was to evaluate dystrophin expression in murine models and human subjects with LVH by transverse aortic constriction (TAC) and aortic stenosis (AS), respectively. We determined whether doxycycline (Doxy) prevented dystrophin expression and myocardial stiffness in mice.

View Article and Find Full Text PDF

Heart phosphorylating electron transfer particles (ETPH) produced NO at 1.2 ± 0.1 nmol NO.

View Article and Find Full Text PDF

Aim: We evaluated the effect of thioredoxin1 (Trx1) system on postischemic ventricular and mitochondrial dysfunction using transgenic mice overexpressing cardiac Trx1 and a dominant negative (DN-Trx1) mutant (C32S/C35S) of Trx1. Langendorff-perfused hearts were subjected to 15 min of ischemia followed by 30 min of reperfusion (R). We measured left ventricular developed pressure (LVDP, mmHg), left ventricular end diastolic pressure (LVEDP, mmHg), and t63 (relaxation index, msec).

View Article and Find Full Text PDF

Heart mitochondria play a central role in cell energy provision and in signaling. Nitric oxide (NO) is a free radical which exerts an integral regulation of the cardiovascular system not only by adapting vascular smooth muscle tone but also by influencing ion channel function, myocyte contraction, energy metabolism, and hypertrophic myocardial remodeling. This chapter analyzes the available data about heart mitochondrial NOS (mtNOS) activity and identity.

View Article and Find Full Text PDF

Heart mitochondria play a central role in cell energy provision and in signaling. Nitric oxide (NO) is a free radical with primary regulatory functions in the heart and involved in a broad array of key processes in cardiac metabolism. Specific NO synthase (NOS) isoforms are confined to distinct locations in cardiomyocytes.

View Article and Find Full Text PDF

Hemorrhage (H) is associated with a left ventricular (LV) dysfunction. However, the diastolic function has not been studied in detail. The main goal was to assess the diastolic function both during and 120 min after bleeding, in the absence and in the presence of L-NAME.

View Article and Find Full Text PDF

Isolated rabbit hearts were exposed to ischemia (I; 15 min) and reperfusion (R; 5-30 min) in a model of stunned myocardium. I/R decreased left-ventricle O(2) consumption (46%) and malate-glutamate-supported mitochondrial state 3 respiration (32%). Activity of complex I was 28% lower after I/R.

View Article and Find Full Text PDF

The activation of matrix metalloproteinases (MMPs) contributes to myocardial injury at the onset of reperfusion; however, their role in ischaemic postconditioning is unknown. The aim of the present study was to examine the effects of ischaemic postconditioning on MMP activity in isolated rabbit hearts. The isolated rabbit hearts were subjected to 30 min of global ischaemia followed by 180 min of reperfusion (I/R group; n = 8).

View Article and Find Full Text PDF

Rats submitted to high altitude (Cerro de Pasco, Perú, 4,340 m, Po(2) = 12.2 kPa) for up to 84 days showed a physiological adaptive response with decreased body weight gain (15%), increased right ventricle weight (100%), and increased hematocrit (40%) compared with sea level animals. These classical parameters of adaptation to high altitude were accompanied by an increase in heart mitochondrial enzymes: complexes I-III activity by 34% and mitochondrial nitric oxide synthase (mtNOS) activity and expression by >75%.

View Article and Find Full Text PDF

A remarkable number of adaptive responses; including changes in the cardiovascular, respiratory and hematologic systems; takes place during acclimatization to natural or simulated high altitude. This adaptation to chronic hypoxia confers the heart an improved tolerance to all major deleterious consequences of acute O2 deprivation, not only reducing infarct size but also alleviating post-ischemic contractile dysfunction and ventricular arrhythmias. There is growing evidence about the involvement of mitochondria and NO in the establishment of cardioprotection.

View Article and Find Full Text PDF

The mitochondrial metabolic state regulates the rate of NO release from coupled mitochondria: NO release by heart, liver and kidney mitochondria was about 40-45% lower in state 3 (1.2, 0.7 and 0.

View Article and Find Full Text PDF

Mitochondria isolated from rat heart, liver, kidney and brain (respiratory control 4.0-6.5) release NO and H2O2 at rates that depend on the mitochondrial metabolic state: releases are higher in state 4, about 1.

View Article and Find Full Text PDF

The functional activity of mitochondrial nitric oxide synthase (mtNOS) is determined by inhibiting O2 uptake and by enhancing H2O2 production. The effect of mtNOS activity on mitochondrial O2 uptake is assayed in state 3 respiration in two limit conditions of intramitochondrial NO: at its maximal and minimal levels. The first condition is achieved by supplementation with L-arginine and superoxide dismutase (SOD), and the second by addition of an NOS inhibitor and oxyhemoglobin.

View Article and Find Full Text PDF

Mitochondrial nitric oxide (NO) production was assayed in rats submitted to hypobaric hypoxia and in normoxic controls (53.8 and 101.3 kPa air pressure, respectively).

View Article and Find Full Text PDF

Male rats exposed for 21 days to high altitude (4,340 m) responded with arrest of weight gain and increased hematocrit and testosterone levels. High altitude significantly (58%) increased heart mitochondrial nitric oxide (NO) synthase (mtNOS) activity, whereas heart cytosolic endothelial NOS (eNOS) and liver mtNOS were not affected. Western blot analysis found heart mitochondria reacting only with anti-inducible NOS (iNOS) antibodies, whereas the postmitochondrial fraction reacted with anti-iNOS and anti-eNOS antibodies.

View Article and Find Full Text PDF

The antioxidant capacity of polyphenols (+)-catechin, (-)-epicatechin and myricetin, and of different types of red wines (Cabernet Sauvignon, Malbec and blended wine) was evaluated by three assays. (a) NADH oxidation by peroxynitrite (ONOO-): the ONOO- scavenging activity was higher for myricetin (IC50=35 microM) than for (+)-catechin (IC50=275 microM) and (-)-epicatechin (IC50=313 microM). (b) Peroxynitrite initiated chemiluminescence in rat liver homogenate: (-)-epicatechin (IC50=7.

View Article and Find Full Text PDF

Nitric oxide synthase activity was recognized in rat renal cortex mitochondria (mtNOS) with nitric oxide (NO) production rates of 0.14-0.78 nmol/min/mg of protein.

View Article and Find Full Text PDF

The effect of O(2) concentration on mitochondrial nitric oxide synthase (mtNOS) activity and on O(2)(-) production was determined in rat liver, brain, and kidney submitochondrial membranes. The K(mO(2)) for mtNOS were 40, 73, and 37 microM O(2) and the V(max) were 0.51, 0.

View Article and Find Full Text PDF