The combination of the generic mobile technology and inherent stability, versatility and cost-effectiveness of the synthetic receptors allows producing optical sensors for potentially any analyte of interest, and, therefore, to qualify as a platform technology for a fast routine analysis of a large number of contaminated samples. To support this statement, we present here a novel miniature sensor based on a combination of molecularly imprinted polymer (MIP) membranes and a smartphone, which could be used for the point-of-care detection of an important food contaminant, oestrogen-like toxin zearalenone associated with contamination of cereals. The detection is based on registration of natural fluorescence of zearalenone using a digital smartphone camera after it binds to the sensor recognition element.
View Article and Find Full Text PDFVariability of the beta-amylase gene in bread wheat, artificial amphidiploids, and derived introgression wheat lines was analyzed. Variation in homeologous beta-amylase sequences caused by the presence of MITE (Miniature Inverted-Repeat Transposable Element) and its footprint has been identified in bread wheat. The previously unknown location of MITE in Triticum urartu and T.
View Article and Find Full Text PDF