Publications by authors named "Tamara Seredenina"

Abnormal cytoplasmic localization and accumulation of pathological transactive response DNA binding protein of 43 kDa (TDP-43) underlies several devastating diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). A key element is the correlation between disease progression and spatio-temporal propagation of TDP-43-mediated pathology in the central nervous system. Several lines of evidence support the concept of templated aggregation and cell to cell spreading of pathological TDP-43.

View Article and Find Full Text PDF

The TAR DNA Binding Protein 43 (TDP-43) has been implicated in the pathogenesis of human neurodegenerative diseases and exhibits hallmark neuropathology in amyotrophic lateral sclerosis (ALS). Here, we explore its tractability as a plasma biomarker of disease and describe its localization and possible functions in the cytosol of platelets. Novel TDP-43 immunoassays were developed on three different technical platforms and qualified for specificity, signal-to-noise ratio, detection range, variation, spike recovery and dilution linearity in human plasma samples.

View Article and Find Full Text PDF

The tropomyosin receptor kinase B (TrkB) is encoded by the gene. It belongs to the family of transmembrane tyrosine kinases, which have key roles in the development and maintenance of the nervous system. Brain-derived neurotrophic factor (BDNF) and the neurotrophins NT3 and NT4/5 have high affinity for TrkB.

View Article and Find Full Text PDF

In amyotrophic lateral sclerosis, a disease driven by abnormal transactive response DNA-binding protein of 43 kDa aggregation, CSF may contain pathological species of transactive response DNA-binding protein of 43 kDa contributing to the propagation of pathology and neuronal toxicity. These species, released in part by degenerating neurons, would act as a template for the aggregation of physiological protein contributing to the spread of pathology in the brain and spinal cord. In this study, a robust seed amplification assay was established to assess the presence of seeding-competent transactive response DNA-binding protein of 43 kDa species in CSF of apparently sporadic amyotrophic lateral sclerosis patients.

View Article and Find Full Text PDF

Optimal pharmacokinetic (PK) properties of therapeutic monoclonal antibodies (mAbs) are essential to achieve the desired pharmacological benefits in patients. To accomplish this, we followed an approach comprising structure-based mAb charge engineering in conjunction with the use of relevant preclinical models to screen and select humanized candidates with PK suitable for clinical development. Murine mAb targeting TDP-43, ACI-5891, was humanized on a framework (VH1-3/VK2-30) selected based on the highest sequence homology.

View Article and Find Full Text PDF

Effective therapies are urgently needed to safely target TDP-43 pathology as it is closely associated with the onset and development of devastating diseases such as frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). In addition, TDP-43 pathology is present as a co-pathology in other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Our approach is to develop a TDP-43-specific immunotherapy that exploits Fc gamma-mediated removal mechanisms to limit neuronal damage while maintaining physiological TDP-43 function.

View Article and Find Full Text PDF

Differentiation of fibroblasts to myofibroblasts is governed by the transforming growth factor beta (TGF-β) through a mechanism involving redox signaling and generation of reactive oxygen species (ROS). Myofibroblasts synthesize proteins of the extracellular matrix (ECM) and display a contractile phenotype. Myofibroblasts are predominant contributors of wound healing and several pathological states, including fibrotic diseases and cancer.

View Article and Find Full Text PDF
Article Synopsis
  • Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by oxidative damage, but the sources of this damage are not well understood.
  • This study investigated the relationship between the enzyme NADPH oxidase 4 and di-tyrosine (DT), a marker of oxidative modification, using tissue samples from patients with IPF compared to controls.
  • Results showed increased DT and NADPH oxidase 4 presence in various cell types of IPF patients, indicating that DT could serve as a marker for IPF and that the enzyme can produce enough oxidative species to promote DT formation in cells.
View Article and Find Full Text PDF

Microglia are tissue-resident macrophages of the CNS that orchestrate local immune responses and contribute to several neurological and psychiatric diseases. Little is known about human microglia and how they orchestrate their highly plastic, context-specific adaptive responses during pathology. Here we combined two high-dimensional technologies, single-cell RNA-sequencing and time-of-flight mass cytometry, to identify microglia states in the human brain during homeostasis and disease.

View Article and Find Full Text PDF

Background: NADPH oxidases (NOX) are a family of flavoenzymes that catalyze the formation of superoxide anion radical (O) and/or hydrogen peroxide (HO). As major oxidant generators, NOX are associated with oxidative damage in numerous diseases and represent promising drug targets for several pathologies. Various small molecule NOX inhibitors are used in the literature, but their pharmacological characterization is often incomplete in terms of potency, specificity and mode of action.

View Article and Find Full Text PDF

Neurodegenerative disease are frequently characterized by microglia activation and/or leukocyte infiltration in the parenchyma of the central nervous system and at the molecular level by increased oxidative modifications of proteins, lipids and nucleic acids. NADPH oxidases (NOX) emerged as a novel promising class of pharmacological targets for the treatment of neurodegeneration due to their role in oxidant generation and presumably in regulating microglia activation. The unique function of NOX is the generation of superoxide anion (O) and hydrogen peroxide (HO).

View Article and Find Full Text PDF
Article Synopsis
  • * Over four years, the EU-ROS consortium, composed of over 140 active members, aimed to enhance understanding of reactive oxygen and nitrogen species (RONS) in relation to diseases linked with oxidative stress.
  • * The report emphasizes the need for detailed knowledge on RONS to improve antioxidant therapies, noting the complexity of oxidative stress's role in human diseases and the importance of interdisciplinary approaches for advancement.
View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by progressive loss of motor neurons, gliosis, neuroinflammation and oxidative stress. The aim of this study was to evaluate the involvement of NADPH oxidases (NOX) in the oxidative damage and progression of ALS neuropathology. We examined the pattern of NOX expression in spinal cords of patients and mouse models of ALS and analyzed the impact of genetic deletion of the NOX1 and 2 isoforms as well as pharmacological NOX inhibition in the SOD1(G93A) ALS mouse model.

View Article and Find Full Text PDF

Significance: Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear.

View Article and Find Full Text PDF

Significance: Oxidative stress is suggested to be a disease mechanism common to a wide range of disorders affecting human health. However, so far, the pharmacotherapeutic exploitation of this, for example, based on chemical scavenging of pro-oxidant molecules, has been unsuccessful.

Recent Advances: An alternative emerging approach is to target the enzymatic sources of disease-relevant oxidative stress.

View Article and Find Full Text PDF

Aims: The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo.

View Article and Find Full Text PDF

NADPH oxidases (NOXs) constitute a family of enzymes generating reactive oxygen species (ROS) and are increasingly recognized as interesting drug targets. Here we investigated the effects of 10 phenothiazine compounds on NOX activity using an extensive panel of assays to measure production of ROS (Amplex red, WST-1, MCLA) and oxygen consumption. Striking differences between highly similar phenothiazines were observed.

View Article and Find Full Text PDF

Significance: Voltage-gated proton channels are increasingly implicated in cellular proton homeostasis. Proton currents were originally identified in snail neurons less than 40 years ago, and subsequently shown to play an important auxiliary role in the functioning of reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Molecular identification of voltage-gated proton channels was achieved less than 10 years ago.

View Article and Find Full Text PDF

Histone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine-rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntington's disease (HD), a protein-folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion in the huntingtin protein. We found that HDAC4 associates with huntingtin in a polyglutamine-length-dependent manner and co-localises with cytoplasmic inclusions.

View Article and Find Full Text PDF

Reversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue specific transcription factors via its N-terminal domain.

View Article and Find Full Text PDF

Huntington's disease is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in huntingtin (HTT) protein. We previously showed that calorie restriction ameliorated Huntington's disease pathogenesis and slowed disease progression in mice that model Huntington's disease (Huntington's disease mice). We now report that overexpression of sirtuin 1 (Sirt1), a mediator of the beneficial metabolic effects of calorie restriction, protects neurons against mutant HTT toxicity, whereas reduction of Sirt1 exacerbates mutant HTT toxicity.

View Article and Find Full Text PDF

The availability of many high-quality genome-wide expression datasets has provided an exciting and unique opportunity to better understand the molecular etiology of Huntington's disease. Combining this knowledge with other aspects of huntingtin biology and disease modification screens is yielding important new insights into disease-mitigating therapeutic strategies. Having followed this line of inquiry for some time, we note that there have been a number of surprises regarding the subsequently confirmed relationships between gene expression and disease etiology.

View Article and Find Full Text PDF

Huntington disease (HD) is a devastating neurodegenerative disorder for which there are no disease-modifying treatments. Previous studies have proposed that activation of the heat shock response (HSR) via the transcription factor heat shock factor 1 (HSF1) may be of therapeutic benefit. However, the effect of disease progression on the HSR and the therapeutic potential of this pathway are currently unknown.

View Article and Find Full Text PDF