Cancer stem cells (CSCs), functionally characterized by self-renewal and tumor-initiating activity, contribute to decreased tumor immunogenicity, while fostering tumor growth and metastasis. Targeting G9a histone methyltransferase (HMTase) effectively blocks CSC functions in colorectal tumors by altering pluripotent-like molecular networks; however, existing molecules directly targeting G9a HMTase activity failed to reach clinical stages due to safety concerns. Using a stem cell-based phenotypic drug-screening pipeline, we identified the dopamine transporter (DAT) antagonist vanoxerine, a compound with previously demonstrated clinical safety, as a cancer-specific downregulator of G9a expression.
View Article and Find Full Text PDFCancer stem cells (CSCs) are documented to play a key role in tumorigenesis and therapy resistance. Despite significant progress in clinical oncology, CSC reservoirs remain elusive and difficult to eliminate. Reverse-turn peptidomimetics were characterized as disruptors of CBP/beta-Catenin interactions and represent a promising avenue to curb hyperactive canonical Wnt/beta-Catenin signaling in CSCs.
View Article and Find Full Text PDFThe histone methyltransferase G9a is well-documented for its implication in neoplastic growth. However, recent investigations have demonstrated a key involvement of this chromatin writer in maintaining the self-renewal and tumor-initiating capacities of cancer stem cells (CSCs). Direct inhibition of G9a's catalytic activity was reported as a promising therapeutic target in multiple preclinical studies.
View Article and Find Full Text PDF