Publications by authors named "Tamara S Nunner"

Magnetic impurities play an important role in many spintronics-related materials. Motivated by this fact, we study the anomalous Hall effect in the presence of magnetic impurities, focusing on two-dimensional electron systems with Rashba spin-orbit coupling. We find a highly nonlinear dependence on the impurity polarization, including possible sign changes.

View Article and Find Full Text PDF

We study the anomalous Hall conductivity in spin-polarized, asymmetrically confined two-dimensional electron and hole systems, taking into account the intrinsic, side-jump, and skew-scattering contributions to the transport. We find that the skew scattering, principally responsible for the extrinsic contribution to the anomalous Hall effect, vanishes for the two-dimensional electron system if both chiral Rashba subbands are partially occupied, and vanishes always for the two-dimensional hole gas studied here, regardless of the band filling. Our prediction can be tested with the proposed coplanar two-dimensional electron-hole gas device and can be used as a benchmark to understand the crossover from the intrinsic to the extrinsic anomalous Hall effect.

View Article and Find Full Text PDF

We study Andreev states near atomic scale modulations in the pairing potential in both s- and d-wave superconductors with short coherence lengths. For a moderate reduction of the local gap, the states exist only close to the gap edge. If one allows for local sign changes of the order parameter, however, resonances can occur at energies close to the Fermi level.

View Article and Find Full Text PDF

A comparison of recent experimental STM data with single-impurity and many-impurity Bogoliubov-de Gennes calculations strongly suggests that random out-of-plane dopant atoms in cuprates modulate the pair interaction locally. This type of disorder is crucial to understanding the nanoscale electronic inhomogeneity observed in BSCCO-2212, and can reproduce observed correlations between the positions of impurity atoms and various aspects of the local density of states such as the gap magnitude and the height of the coherence peaks. Our results imply that each dopant atom modulates the pair interaction on a length scale of order one lattice constant.

View Article and Find Full Text PDF