Background: Signaling pathways mediated by microRNAs (miRNAs) have been identified as one of the mechanisms that regulate stroke progression and recovery. Recent investigations using stroke patient blood and cerebrospinal fluid (CSF) demonstrated disease-specific alterations in miRNA expression. In this study, for the first time, we investigated miRNA expression signatures in freshly removed human stroke brain tissue.
View Article and Find Full Text PDFmicroRNAs (miRNAs) are recently identified small RNA molecules that regulate gene expression and significantly influence the essential cellular processes associated with CNS repair after trauma and neuropathological conditions including stroke and neurodegenerative disorders. A number of specific miRNAs are implicated in regulating the development and propagation of CNS injury, as well as its subsequent regeneration. The review focuses on the functions of the miRNAs and their role in brain recovery following CNS damage.
View Article and Find Full Text PDFBackground: Brain microvascular endothelial cells form a highly selective blood brain barrier regulated by the endothelial tight junctions. Cerebral ischemia selectively targets tight junction protein complexes, which leads to significant damage to cerebral microvasculature. Short noncoding molecules called microRNAs are implicated in the regulation of various pathological states, including endothelial barrier dysfunction.
View Article and Find Full Text PDFFront Mol Neurosci
February 2018
Stroke-induced endothelial cell injury leads to destruction of cerebral microvasculature and significant damage to the brain tissue. A subacute phase of cerebral ischemia is associated with regeneration involving the activation of vascular remodeling, neuroplasticity, neurogenesis, and neuroinflammation processes. Effective restoration and improvement of blood supply to the damaged brain tissue offers a potential therapy for stroke.
View Article and Find Full Text PDFBackground: MicroRNA miR-155 is implicated in modulation of the inflammatory processes in various pathological conditions. In our previous studies, we demonstrated that in vivo inhibition of miR-155 promotes functional recovery after mouse experimental stroke. In the present study, we explored if this beneficial effect is associated with miR-155 inhibition-induced alterations in post-stroke inflammatory response.
View Article and Find Full Text PDFA multifunctional microRNA, miR-155, has been recently recognized as an important modulator of numerous biological processes. In our previous in vitro studies, miR-155 was identified as a potential regulator of the endothelial morphogenesis. The present study demonstrates that in vivo inhibition of miR-155 supports cerebral vasculature after experimental stroke.
View Article and Find Full Text PDFHypertensive small vessel disease is a major cause of vascular cognitive impairment (VCI). Spontaneously hypertensive/stroke prone rats (SHR/SP) with unilateral carotid artery occlusion (UCAO) and a Japanese permissive diet (JPD) have white-matter (WM) damage similar to that seen in VCI. We hypothesized that WM injury was due to hypoxia-mediated, blood-brain barrier (BBB) disruption.
View Article and Find Full Text PDFPulsed electromagnetic fields (PEMF) have been demonstrated to have anti-inflammatory and pro-regenerative effects in animals and humans. We used the FDA-approved Sofpulse (Ivivi Health Sciences, LLC) to study effect of PEMF on infarct size and poststroke inflammation following distal middle cerebral artery occlusion (dMCAO) in mice. Electromagnetic field was applied within 30-45 min after ischemic brain damage and utilized twice a day for 21 consecutive days.
View Article and Find Full Text PDFFunctional signaling between neural stem/progenitor cells (NSPCs) and brain endothelial cells (ECs) is essential to the coordination of organized responses during initial embryonic development and also during tissue repair, which occurs following brain injury. In this study, we investigated the molecular mechanisms underlying this functional signaling, using primary mouse brain ECs and NSPCs from embryonic mouse brain. EC/NSPC co-culture experiments have revealed that neural progenitors secrete factors supporting angiogenesis, which induce noticeable changes in endothelial morphology.
View Article and Find Full Text PDFGestational alcohol exposure leads to a spectrum of neurological symptoms which range from severe mental retardation caused by high dose exposure, to subtle cognitive and neuropsychiatric symptoms caused by low-to-moderate doses. We and other investigators have demonstrated that exposure to moderate levels of alcohol throughout gestation leads to impaired neurogenesis in the adult hippocampus, although the mechanisms by which this occurs are not known. To begin to distinguish cell-intrinsic from microenvironmental contributions to impaired adult neurogenesis, we isolated neural stem progenitor cells (NSPCs) from the adult SVZ of mice exposed to moderate levels of alcohol throughout gestation.
View Article and Find Full Text PDFApproximately 60,000 patients in the United States are waiting for a kidney transplant due to genetic, immunologic and environmentally caused kidney failure. Adult human renal stem cells could offer opportunities for autologous transplant and repair of damaged organs. Current data suggest that there are multiple progenitor types in the kidney with distinct localizations.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is caused by mutation of PKD1 and PKD2 that encode polycystin-1 and polycystin-2. Polycystin-1 is tyrosine phosphorylated and modulates multiple signaling pathways including AP-1, and the identity of the phosphatases regulating polycystin-1 are previously uncharacterized. Here we identify members of the LAR protein tyrosine phosphatase (RPTP) superfamily as members of the polycystin-1complex mediated through extra- and intracellular interactions.
View Article and Find Full Text PDFHypoxia-inducible factor-1 alpha subunit (HIF-1α) is a transcriptional activator mediating adaptive cellular response to hypoxia. Normally degraded in most cell types and tissues, HIF-1α becomes stable and transcriptionally active under conditions of hypoxia. In contrast, we found that HIF-1α is continuously expressed in adult brain neurogenic zones, as well as in neural stem/progenitor cells (NSPCs) from the embryonic and post-natal mouse brain.
View Article and Find Full Text PDFVascular cells provide a neural stem/progenitor cell (NSPC) niche that regulates expansion and differentiation of NSPCs within the germinal zones of the embryonic and adult brain under both physiologic and pathologic conditions. Here, we examined the NSPC-endothelial cell (NSPC/EC) interaction under conditions of ischemia, both in vitro and after intracerebral transplantation. In culture, embryonic mouse NSPCs supported capillary morphogenesis and protected ECs from cell death induced by serum starvation or by transient oxygen and glucose deprivation (OGD).
View Article and Find Full Text PDFPolycystins are plasma membrane proteins that are expressed in kidney epithelial cells and associated with the progression of ADPKD (autosomal dominant polycystic kidney disease). A polycystin multiprotein complex, including adherens junction proteins, is thought to play an important role in cell polarity and differentiation. Sucrose gradient analyses and immunoprecipitation studies of primary human kidney epithelial cells showed the polycystins and their associated proteins E-cadherin and beta-catenin distributed in a complex with the raft marker flotillin-2, but not caveolin-1, in high-density gradient fractions.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is typified by the accumulation of fluid-filled cysts and abnormalities in renal epithelial cell function. The disease is principally caused by mutations in the gene encoding polycystin-1, a large basolateral plasma membrane protein expressed in kidney epithelial cells. Our studies reveal that, in normal kidney cells, polycystin-1 forms a complex with the adherens junction protein E-cadherin and its associated catenins, suggesting a role in cell adhesion or polarity.
View Article and Find Full Text PDFEstablishment and maintenance of a polarized epithelium relies on the integration of signaling cascades, acquisition of specialized trafficking circuits and establishment of a unique cytoarchitecture. Defects in any of these processes can adversely affect cell polarity and cause defects in specific organs and systemic disease. Mutations that disrupt the proper transport of individual plasma membrane proteins, or inactivate components of the epithelial-specific trafficking machinery, have severe functional consequences.
View Article and Find Full Text PDF