G-protein-coupled receptors (GPCRs) are the largest family of cell receptors. They mediate the effects of a multitude of endogenous and exogenous cues, are deeply involved in human physiology and disease, and are major pharmacological targets. Whereas GPCRs were long thought to signal exclusively at the plasma membrane, research over the past 15 years has revealed that they also signal via classical G-protein-mediated pathways on membranes of intracellular organelles such as endosomes and the Golgi complex.
View Article and Find Full Text PDFMeasurements of membrane protein thermostability reflect ligand binding. Current thermostability assays often require protein purification or rely on pre-existing radiolabelled or fluorescent ligands, limiting their application to established targets. Alternative methods, such as fluorescence-detection size exclusion chromatography thermal shift, detect protein aggregation but are not amenable to high-throughput screening.
View Article and Find Full Text PDFβ-arrestin plays a key role in G protein-coupled receptor (GPCR) signaling and desensitization. Despite recent structural advances, the mechanisms that govern receptor-β-arrestin interactions at the plasma membrane of living cells remain elusive. Here, we combine single-molecule microscopy with molecular dynamics simulations to dissect the complex sequence of events involved in β-arrestin interactions with both receptors and the lipid bilayer.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling.
View Article and Find Full Text PDFPharmacological modulation of cannabinoid type 2 receptor (CBR) holds promise for the treatment of numerous conditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this receptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CBR signaling, especially in cell-type and tissue-dependent contexts. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CBR fluorescent probes, used successfully across applications, species, and cell types.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are versatile membrane proteins involved in the regulation of many physiological processes and pathological conditions, making them interesting pharmacological targets. In order to study their structure and function, GPCRs are traditionally extracted from membranes using detergents. However, due to their hydrophobic nature, intrinsic instability in aqueous solutions, and their denaturing effects, the isolation of properly folded and functional GPCRs is not trivial.
View Article and Find Full Text PDFSite-directed scanning mutagenesis is a useful tool applied in studying protein function and designing proteins with new properties, such as increased stability or enzymatic activity. Creating a systematic library of hundreds of site-directed mutants is still a demanding and expensive task. The established protocols for making such libraries include PCR amplification of the recombinant DNA using a pair of primers carrying a target mutation in the same PCR.
View Article and Find Full Text PDFSite-directed scanning mutagenesis is a powerful protein engineering technique which allows studies of protein functionality at single amino acid resolution and design of stabilized proteins for structural and biophysical work. However, creating libraries of hundreds of mutants remains a challenging, expensive and time-consuming process. The efficiency of the mutagenesis step is the key for fast and economical generation of such libraries.
View Article and Find Full Text PDFClass A G-protein-coupled receptors (GPCRs) are a large family of membrane proteins that mediate a wide variety of physiological functions, including vision, neurotransmission and immune responses. They are the targets of nearly one-third of all prescribed medicinal drugs such as beta blockers and antipsychotics. GPCR activation is facilitated by extracellular ligands and leads to the recruitment of intracellular G proteins.
View Article and Find Full Text PDF