A new methodology for the asymmetric hydrogenation of allylamines takes advantage of a reversible reaction between amines and carbon dioxide (CO) to suppress unwanted side reactions. The effects of various parameters (pressure, time, solvent, and base additives) on the enantioselectivity and conversion of the reaction were studied. The homogeneously-catalyzed asymmetric hydrogenation of 2-arylprop-2-en-1-amine resulted in complete conversion and up to 82% enantiomeric excess (ee).
View Article and Find Full Text PDFIntroduction: Waterpipe use remains popular among youth with the availability of flavored shisha tobacco being one of the main drivers of waterpipe use. Although waterpipe mainstream toxicant emissions are well understood, less is known about the carryover of flavorants such as vanillin, benzaldehyde, and eugenol. In this study, flavored waterpipe tobacco was analyzed for flavorants and nicotine, and subsequent carryover to mainstream smoke.
View Article and Find Full Text PDFLignin valorization is essential for biorefineries to produce fuels and chemicals for a sustainable future. Today's biorefineries pursue profitable value propositions for cellulose and hemicellulose; however, lignin is typically used mainly for its thermal energy value. To enhance the profit potential for biorefineries, lignin valorization would be a necessary practice.
View Article and Find Full Text PDFIntroduction: "Vaping" electronic cigarettes (e-cigarettes) is increasingly popular with youth, driven by the wide range of available flavors, often created using flavor aldehydes. The objective of this study was to examine whether flavor aldehydes remain stable in e-cigarette liquids or whether they undergo chemical reactions, forming novel chemical species that may cause harm to the user.
Methods: Gas chromatography was used to determine concentrations of flavor aldehydes and reaction products in e-liquids and vapor generated from a commercial e-cigarette.
This Research Letter evaluates the amount of sugars found in cigarillos by brand.
View Article and Find Full Text PDFThe appeal of sweet electronic cigarette flavors makes it important to identify the chemical compounds that contribute to their sweetness. While volatile chemicals that produce sweet aromas have been identified in e-liquids, there are no published reports of sugars or artificial sweeteners in commercial e-liquids. However, the sweetener sucralose is marketed as an e-liquid additive to commercial flavors.
View Article and Find Full Text PDF