The anticancer agent, 5-aza-2'-deoxycytidine (5-azaCdR, decitabine), causes DNA hypomethylation and a robust, dose-dependent disruption of spermatogenesis. Previously, we have shown that altered testicular histology and reduced sperm production in 5-azaCdR-treated animals is associated with decreased global sperm DNA methylation and an increase in infertility and/or a decreased ability to support preimplantation embryonic development. The goal of this study was to determine potential contributors to 5-azaCdR-mediated infertility including alterations in sperm motility, fertilization ability, early embryo development, and sequence-specific DNA methylation.
View Article and Find Full Text PDFMetabolism of folate is essential for proper cellular function. Within the folate pathway, methylenetetrahydrofolate reductase (MTHFR) reduces 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a methyl donor for remethylation of homocysteine to methionine, the precursor of S-adenosylmethionine. S-adenosylmethionine is the methyl donor for numerous cellular reactions.
View Article and Find Full Text PDFBecause of the ability of cytidine analogues, such as 5-aza-2'-deoxycytidine, to incorporate into DNA and lead to decreases in DNA methylation, there has recently been renewed interest in using these drugs in anticancer therapy. To determine the effects of paternal 5-aza-2'-deoxycytidine treatment on spermatogenesis and progeny outcome in the mouse and whether effects are modulated by decreased levels of the predominant DNA methyltransferase, DNMT1, adult Dnmt1(+/+) and Dnmt1-deficient (Dnmt1(c/+)) male mice were treated with 5-aza-2'-deoxycytidine for 7 weeks, which resulted in dose-dependent decreases in testicular weight, an increase in histological abnormalities, and a decline in sperm counts, with no apparent effect on androgen status. Testes of Dnmt1(c/+) mice, however, were less severely affected by 5-aza-2'-deoxycytidine than were those of wild-type mice.
View Article and Find Full Text PDF