Leukoencephalopathy with vanishing white matter (VWM) is a progressive incurable white matter disease that most commonly occurs in childhood and presents with ataxia, spasticity, neurological degeneration, seizures, and premature death. A distinctive feature is episodes of rapid neurological deterioration provoked by stressors such as infection, seizures, or trauma. VWM is caused by autosomal recessive mutations in one of five genes that encode the eukaryotic initiation factor 2B complex, which is necessary for protein translation and regulation of the integrated stress response.
View Article and Find Full Text PDFBackground: Mitchell syndrome is a rare, neurodegenerative disease caused by an ACOX1 gain-of-function mutation (c.710A>G; p.N237S), with fewer than 20 reported cases.
View Article and Find Full Text PDFMicromachines (Basel)
December 2023
Zebrafish have emerged as a useful model for biomedical research and have been used in environmental toxicology studies. However, the presence of the chorion during the embryo stage limits cellular exposure to toxic elements and creates the possibility of a false-negative or reduced sensitivity in fish embryo toxicity testing (FET). This paper presents the use of electroporation as a technique to improve the delivery of toxic elements inside the chorion, increasing the exposure level of the toxins at an early embryo stage (<3 h post-fertilization).
View Article and Find Full Text PDFElectroporation is regularly used to deliver agents into cells, including transgenic materials, but it is not used for mutating zebrafish embryos due to the lack of suitable systems, information on appropriate operating parameters, and the challenges posed by the protective chorion. Here, a novel method for gene delivery in zebrafish embryos was developed by combining microinjection into the space between the chorion and the embryo followed by electroporation. This method eliminates the need for chorion removal and injecting into the space between the chorion and embryo eliminates the need for finding and identifying key cell locations before performing an injection, making the process much simpler and more automatable.
View Article and Find Full Text PDFX-linked adrenoleukodystrophy (ALD) is a progressive neurodegenerative disease caused by mutations in ABCD1, the peroxisomal very long-chain fatty acid (VLCFA) transporter. ABCD1 deficiency results in accumulation of saturated VLCFAs. A drug screen using a phenotypic motor assay in a zebrafish ALD model identified chloroquine as the top hit.
View Article and Find Full Text PDFVanishing white matter disease (VWM) is a severe leukodystrophy of the central nervous system caused by mutations in subunits of the eukaryotic initiation factor 2B complex (eIF2B). Current models only partially recapitulate key disease features, and pathophysiology is poorly understood. Through development and validation of zebrafish () models of VWM, we demonstrate that zebrafish mutants phenocopy VWM, including impaired somatic growth, early lethality, effects on myelination, loss of oligodendrocyte precursor cells, increased apoptosis in the CNS, and impaired motor swimming behavior.
View Article and Find Full Text PDFHypoxic injury to the developing human brain is a complication of premature birth and is associated with long-term impairments of motor function. Disruptions of axon and synaptic connectivity have been linked to developmental hypoxia, but the fundamental mechanisms impacting motor function from altered connectivity are poorly understood. We investigated the effects of hypoxia on locomotor development in zebrafish.
View Article and Find Full Text PDFZebrafish are a valuable model organism in biomedical research. Their rapid development, ability to model human diseases, utility for testing genetic variants identified from next-generation sequencing, amenity to CRISPR mutagenesis, and potential for therapeutic compound screening, has led to their wide-spread adoption in diverse fields of study. However, their power for large-scale screens is limited by the absence of automated genotyping tools for live animals.
View Article and Find Full Text PDFX-linked adrenoleukodystrophy (ALD) is a devastating inherited neurodegenerative disease caused by defects in the ABCD1 gene and affecting peripheral and central nervous system myelin. ABCD1 encodes a peroxisomal transmembrane protein required for very long chain fatty acid (VLCFA) metabolism. We show that zebrafish (Danio rerio) Abcd1 is highly conserved at the amino acid level with human ABCD1, and during development is expressed in homologous regions including the central nervous system and adrenal glands.
View Article and Find Full Text PDFBackground: Despite the fundamental biological importance and clinical relevance of characterizing the effects of chronic hypoxia exposure on central nervous system (CNS) development, the changes in gene expression from hypoxia are unknown. It is not known if there are unifying principles, properties, or logic in the response of the developing CNS to hypoxic exposure. Here, we use the small vertebrate zebrafish (Danio rerio) to study the effects of hypoxia on connectivity gene expression across development.
View Article and Find Full Text PDFTools for genetically-determined visualization of synaptic circuits and interactions are necessary to build connectomics of the vertebrate brain and to screen synaptic properties in neurological disease models. Here we develop a transgenic FingR (fibronectin intrabodies generated by mRNA display) technology for monitoring synapses in live zebrafish. We demonstrate FingR labeling of defined excitatory and inhibitory synapses, and show FingR applicability for dissecting synapse dynamics in normal and disease states.
View Article and Find Full Text PDFUnlabelled: Modulation of connectivity formation in the developing brain in response to external stimuli is poorly understood. Here, we show that the raphe nucleus and its serotonergic projections regulate pathfinding of commissural axons in zebrafish. We found that the raphe neurons extend projections toward midline-crossing axons and that when serotonergic signaling is blocked by pharmacological inhibition or by raphe neuron ablation, commissural pathfinding is disrupted.
View Article and Find Full Text PDFObjective: We describe a novel congenital motor neuron disease with early demise due to respiratory insufficiency with clinical overlap with spinal muscular atrophy with respiratory distress (SMARD) type 1 but lacking a mutation in the IGHMBP2 gene.
Methods: Exome sequencing was used to identify a de novo mutation in the LAS1L gene in the proband. Pathogenicity of the mutation was validated using a zebrafish model by morpholino-mediated knockdown of las1l.
Zebrafish is a powerful vertebrate model system for studying development, modeling disease, and performing drug screening. Recently a variety of genetic tools have been introduced, including multiple strategies for inducing mutations and generating transgenic lines. However, large-scale screening is limited by traditional genotyping methods, which are time-consuming and labor-intensive.
View Article and Find Full Text PDFfoxP2, a forkhead-domain transcription factor, is critical for speech and language development in humans, but its role in the establishment of CNS connectivity is unclear. While in vitro studies have identified axon guidance molecules as targets of foxP2 regulation, and cell culture assays suggest a role for foxP2 in neurite outgrowth, in vivo studies have been lacking regarding a role for foxP2 in axon pathfinding. We used a modified zinc finger nuclease methodology to generate mutations in the zebrafish foxP2 gene.
View Article and Find Full Text PDFThe mechanisms of hypoxic injury to the developing human brain are poorly understood, despite being a major cause of chronic neurodevelopmental impairments. Recent work in the invertebrate Caenorhabditis elegans has shown that hypoxia causes discrete axon pathfinding errors in certain interneurons and motorneurons. However, it is unknown whether developmental hypoxia would have similar effects in a vertebrate nervous system.
View Article and Find Full Text PDFThe dopaminergic neurons of the basal ganglia play critical roles in CNS function and human disease, but specification of dopamine neuron phenotype is poorly understood in vertebrates. We performed an in vivo screen in zebrafish to identify dopaminergic neuron enhancers, in order to facilitate studies on the specification of neuronal identity, connectivity, and function in the basal ganglia. Based primarily on identification of conserved non-coding elements, we tested 54 DNA elements from four species (zebrafish, pufferfish, mouse, and rat), that included 21 genes with known or putative roles in dopaminergic neuron specification or function.
View Article and Find Full Text PDFThe autosomal dominant mutation in the human alphaB-crystallin gene inducing a R120G amino acid exchange causes a multisystem, protein aggregation disease including cardiomyopathy. The pathogenesis of cardiomyopathy in this mutant (hR120GCryAB) is poorly understood. Here, we show that transgenic mice overexpressing cardiac-specific hR120GCryAB recapitulate the cardiomyopathy in humans and find that the mice are under reductive stress.
View Article and Find Full Text PDFNewts have the remarkable ability to regenerate lost appendages including their forelimbs, hindlimbs, and tails. Following amputation of an appendage, the wound is rapidly closed by the migration of epithelial cells from the proximal epidermis. Internal cells just proximal to the amputation plane begin to dedifferentiate to form a pool of proliferating progenitor cells known as the regeneration blastema.
View Article and Find Full Text PDFMatrix metalloproteinase (MMP) activity is important for newt limb regeneration. In most biological processes that require MMP function, MMP activity is tightly controlled by a variety of mechanisms, including the coexpression of natural inhibitors. Here, we show that gene expression of one such inhibitor, tissue inhibitor of metalloproteinase 1 (NvTIMP1), is upregulated during the wound healing and dedifferentiation stages of regeneration when several MMPs are at their maximal expression levels.
View Article and Find Full Text PDFNewts regenerate lost limbs through a complex process involving dedifferentiation, migration, proliferation, and redifferentiation of cells proximal to the amputation plane. To identify the genes controlling these cellular events, we performed a differential display analysis between regenerating and nonregenerating limbs from the newt Notophthalmus viridescens. This analysis, coupled with a direct cloning approach, identified a previously unknown Notophthalmus collagenase gene (nCol) and three known matrix metalloproteinase (MMP) genes, MMP3/10a, MMP3/10b, and MMP9, all of which are upregulated within hours of limb amputation.
View Article and Find Full Text PDF