J Immunother Cancer
December 2022
Background: B cells play a pivotal role in regulating the immune response. The induction of B cell-mediated immunosuppressive function requires B cell activating signals. However, the mechanisms by which activated B cells mediate T-cell suppression are not fully understood.
View Article and Find Full Text PDFTrogocytosis is an active process that transfers surface material from targeted to effector cells. Using multiple in vivo tumor models and clinical data, we report that chimeric antigen receptor (CAR) activation in natural killer (NK) cells promoted transfer of the CAR cognate antigen from tumor to NK cells, resulting in (1) lower tumor antigen density, thus impairing the ability of CAR-NK cells to engage with their target, and (2) induced self-recognition and continuous CAR-mediated engagement, resulting in fratricide of trogocytic antigen-expressing NK cells (NK) and NK cell hyporesponsiveness. This phenomenon could be offset by a dual-CAR system incorporating both an activating CAR against the cognate tumor antigen and an NK self-recognizing inhibitory CAR that transferred a 'don't kill me' signal to NK cells upon engagement with their TROG siblings.
View Article and Find Full Text PDFNatural killer (NK) cells comprise a unique population of innate lymphoid cells endowed with intrinsic abilities to identify and eliminate virally infected cells and tumour cells. Possessing multiple cytotoxicity mechanisms and the ability to modulate the immune response through cytokine production, NK cells play a pivotal role in anticancer immunity. This role was elucidated nearly two decades ago, when NK cells, used as immunotherapeutic agents, showed safety and efficacy in the treatment of patients with advanced-stage leukaemia.
View Article and Find Full Text PDFAm Soc Clin Oncol Educ Book
March 2021
Adoptive cell therapy has significantly impacted the immuno-oncology landscape. The number of strategies currently in preclinical and clinical development is increasing at a rapid rate. Indeed, we are experiencing a transformative movement in cancer care as we shift toward highly personalized treatments designed to confront the specific challenges of each cancer.
View Article and Find Full Text PDFThe rapid advancement of immunotherapy strategies has created a need for technologies that can reliably and reproducibly identify rare populations, detect subtle changes in modulatory signals, and assess antigenic expression patterns that are time-sensitive. Accomplishing these tasks requires careful planning and the employment of tools that provide greater sensitivity and specificity without demanding extensive time. Flow Cytometry has earned its place as a preferred analysis platform.
View Article and Find Full Text PDFWiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disease caused by mutations in the gene encoding the WAS protein (WASp). Here, induced pluripotent stem cells (iPSCs) were derived from a WAS patient (WAS-iPSC) and the endogenous chromosomal WAS locus was targeted with a wtWAS-2A-eGFP transgene using zinc finger nucleases (ZFNs) to generate corrected WAS-iPSC (cWAS-iPSC). WASp and GFP were first expressed in the earliest CD34(+)CD43(+)CD45(-) hematopoietic precursor cells and later in all hematopoietic lineages examined.
View Article and Find Full Text PDF