Acute kidney injury (AKI) is characterized by cell death and inflammation. CD24 is a protein induced during tissue damage and is not expressed in mature renal tissue. We explored the role of CD24 in the pathogenesis of folic acid-induced AKI (FA-AKI) in mice.
View Article and Find Full Text PDFEndothelial dysfunction because of nitric oxide inactivation has been suggested to play a role in the pathogenesis of preeclampsia. During pregnancy, L-arginine transport by CAT-1 (cationic amino acid transporter 1), the only transporter for eNOS (endothelial nitric oxide synthase) is inhibited. We hypothesize that maternal arginine deficiency contributes to the development of preeclampsia.
View Article and Find Full Text PDFBlockade of the mineralocorticoid receptor (MCR) has been shown to improve endothelial function far beyond blood pressure control. In the current studies we have looked at the effect of MCR antagonists on cationic amino acid transporter-1 (CAT-1), a major modulator of endothelial nitric oxide (NO) generation. Using radio-labeled arginine, {[H] l-arginine} uptake was determined in human umbilical vein endothelial cells (HUVEC) following incubation with either spironolactone or eplerenone with or without silencing of MCR.
View Article and Find Full Text PDFBackground/aims: Vascular endothelial growth factor (VEGF) is an endothelium-specific peptide that stimulates angiogenesis via two receptor tyrosine kinases, Flt-1 and KDR. Endothelial nitric oxide synthase (eNOS) plays a major role in VEGF signaling. Delivery of arginine to membrane bound eNOS by the cationic amino acid transporter-1 (CAT-1) has been shown to modulate eNOS activity.
View Article and Find Full Text PDFDimethyl sulfoxide (DMSO) is a solvent that is commonly used in medicine. Conflicting data exist as to its effects on endothelial function. Endothelial cell dysfunction (ECD) is characterized by decreased endothelial nitric oxide synthase (eNOS) activity.
View Article and Find Full Text PDFDecreased generation of nitric oxide (NO) by endothelial NO synthase (eNOS) characterizes endothelial dysfunction (ECD). Delivery of arginine to eNOS by cationic amino acid transporter-1 (CAT-1) was shown to modulate eNOS activity. We found in female rats, but not in males, that CAT-1 activity is preserved with age and in chronic renal failure, two experimental models of ECD.
View Article and Find Full Text PDFEndothelial cell dysfunction (ECD) is a common feature of chronic renal failure (CRF). Defective nitric oxide (NO) generation due to decreased endothelial nitric oxide synthase (eNOS) activity is a crucial parameter characterizing ECD. Decreased activity of cationic amino acid transporter-1 (CAT-1), the selective arginine transporter of eNOS, has been shown to inhibit eNOS in uremia.
View Article and Find Full Text PDFBackground: The spectrum of cardiovascular toxicity by cyclosporine (CsA) includes hypertension, accelerated atherosclerosis, and thrombotic microangiopathy, all of which are the result of endothelial cell dysfunction. Endothelial cell dysfunction is characterized by decreased endothelial nitric oxide synthase (eNOS) activity. Cationic amino acid transporter-1 (CAT-1) is the specific arginine transporter for eNOS.
View Article and Find Full Text PDFPregnancy worsens renal function in females with chronic renal failure (CRF) through an unknown mechanism. Reduced nitric oxide (NO) generation induces renal injury. Arginine transport by cationic amino acid transporter-1 (CAT-1), which governs endothelial NO generation, is reduced in both renal failure and pregnancy.
View Article and Find Full Text PDFObjectives: Hyperuricemia provokes endothelial dysfunction (ECD). Decreased endothelial nitric oxide synthase (eNOS) activity is an important source of ECD. Cationic amino acid transporter-1 (CAT-1) is the specific arginine transporter for eNOS.
View Article and Find Full Text PDFExperimental models using rats suggest that decreased endothelial nitric oxide synthase (eNOS) activity in old males promotes renal atherosclerosis, whereas females are protected. We aimed to explore whether aging alters aortic arginine uptake by CAT-1, the selective arginine supplier to eNOS in rats. Arginine uptake by freshly harvested aortic rings from young males (9 weeks) was significantly higher than in young females.
View Article and Find Full Text PDFAnimal models suggest that decreased renal endothelial nitric oxide synthase (eNOS) activity in old males promotes renal injury, whereas females are protected. We aimed to explore whether aging alters glomerular arginine uptake by CAT-1, the selective arginine supplier to eNOS in rats. Arginine uptake by glomeruli from young males (3 mo) was significantly higher than in young females.
View Article and Find Full Text PDFBackground: The decrease in glomerular filtration rate (GFR), which is characteristic of obstructive uropathy, was suggested to be associated with attenuated nitric oxide (NO) generation. Since availability of L-arginine, the sole precursor for NO, governs NO synthesis, we aimed to determine the role of glomerular arginine transport in rats subjected to 24 h of bilateral ureteral ligation (BUO).
Methods: Glomerular arginine transport was measured by uptake of radiolabeled arginine ([(3)H]-L-arginine), cationic amino acid transporters (CAT)-1 and -2 and arginases I and II mRNA expression were determined using reverse transcription-polymerase chain reaction.
Peroxisome proliferator-activated receptor (PPAR) agonists were shown to inhibit atherosclerosis through augmentation of endothelial nitric oxide synthase (eNOS) activity. In addition, rosiglitazone exerts a beneficial effect in chronic renal failure (CRF). Since l-arginine transport by CAT-1 (the specific arginine transporter for eNOS) is inhibited in uremia, we aimed to explore the effect of rosiglitazone on arginine transport in CRF.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2008
While a specific role for nitric oxide (NO) in inducing the hemodynamic alterations of pregnancy is somewhat controversial, it is widely accepted that excess NO is generated during pregnancy. L-Arginine is the sole precursor for NO biosynthesis. Among several transporters that mediate L-arginine uptake, cationic amino acid transporter-1 (CAT-1) acts as the specific arginine transporter for endothelial NO synthase.
View Article and Find Full Text PDFBackground: Tumor necrosis factor alpha (TNF-alpha) is a key cytokine in the pathogenesis of ischemia-reperfusion injury (I/R) that also possesses negative inotropic and direct cardiotoxic effects. We investigated whether myocardial ischemia and/or reperfusion is the trigger for TNF-alpha synthesis and whether TNF-alpha release is time dependent.
Methods: Isolated rat hearts undergoing 30 min of coronary perfusion with modified Krebs-Henseleit solution followed by cardioplegic arrest for 60 min of global cardioplegic normothermic ischemia (GCI) and 30 min of reperfusion using a modified Langendorff model.
Endothelial cell dysfunction (ECD) is a common feature of hypercholesterolemia. Defective nitric oxide (NO) generation due to decreased endothelial nitric oxide synthase (eNOS) activity is a crucial parameter characterizing ECD. L-arginine is the sole precursor for NO biosynthesis.
View Article and Find Full Text PDFObjectives: To lessen renal ischemic injury caused by fucoidin, a substance capable of reducing tissue infiltration by neutrophils, and to seek a possible interrelationship with the nitric oxide system which may also modulate leukocyte infiltration.
Material And Methods: Acute ischemic renal failure was induced in rats by uninephrectomy followed by 60 min of clamping of the renal artery. The rats were injected with fucoidin (25 mg/kg) or fucoidin+nitroprusside (2.
Objectives: Tumor necrosis factor (TNF)-alpha is known to be a proinflammatory cytokine that has a pronounced negative inotropic effect and plays an important role in ischemic-reperfusion injury.
Methods: Twenty isolated rat hearts were randomly divided equally into two groups (heparin and non-heparin) and were perfused with a Krebs-Henseleit solution using a modified Langendorff model. The influence of heparin on the synthesis and release of TNF-alpha by isolated rat hearts after 1 h of global cardioplegic ischemia and on left ventricular (LV) performances during 30 min of postischemic reperfusion was investigated.
Background: It is suggested that either arginine or its metabolites, nitric oxide and polyamines play a role in the renal hemodynamic alterations observed in the early stages of diabetes. Yet, the regulation of arginine transport in diabetic kidneys has never been studied.
Methods: Arginine uptake was determined in glomeruli harvested from control rats; diabetic rats (2 weeks following an intraperitoneal injection of streptozotocin, 60 mg/kg body weight); rats, 4 days following left nephrectomy (a nondiabetic model of hyperfiltration); diabetes + lysine (0.
Objectives: The present study aimed to investigate the influence of endogenous tumor necrosis factor-alpha (TNF-alpha) that was synthesized during ischemia and exogenous TNF-alpha on endothelial and inducible nitric oxide synthase (eNOS and iNOS) messenger ribonucleic acid (mRNA) expression and nitric oxide (NO) production in the isolated rat heart.
Background: Tumor necrosis factor-alpha is recognized as being a proinflammatory cytokine with a significant cardiodepressant effect. One of the proposed mechanisms for TNF-alpha-induced cardiac contractile dysfunction is increased NO production via iNOS mRNA upregulation, but the role of NO in TNF-alpha-induced myocardial dysfunction is highly controversial.