Publications by authors named "Tamara Bintener"

Despite high initial response rates to targeted kinase inhibitors, the majority of patients suffering from metastatic melanoma present with high relapse rates, demanding for alternative therapeutic options. We have previously developed a drug repurposing workflow to identify metabolic drug targets that, if depleted, inhibit the growth of cancer cells without harming healthy tissues. In the current study, we have applied a refined version of the workflow to specifically predict both, common essential genes across various cancer types, and melanoma-specific essential genes that could potentially be used as drug targets for melanoma treatment.

View Article and Find Full Text PDF

Metabolic modeling is a powerful computational tool to analyze metabolism. It has not only been used to identify metabolic rewiring strategies in cancer but also to predict drug targets and candidate drugs for repurposing. Here, we will elaborate on the reconstruction of context-specific metabolic models of cancer using rFASTCORMICS and the subsequent prediction of drugs for repurposing using our drug prediction workflow.

View Article and Find Full Text PDF

Project-based learning (PBL) is a dynamic student-centred teaching method that encourages students to solve real-life problems while fostering engagement and critical thinking. Here, we report on a PBL course on metabolic network modelling that has been running for several years within the Master in Integrated Systems Biology (MISB) at the University of Luxembourg. This 2-week full-time block course comprises an introduction into the core concepts and methods of constraint-based modelling (CBM), applied to toy models and large-scale networks alongside the preparation of individual student projects in week 1 and, in week 2, the presentation and execution of these projects.

View Article and Find Full Text PDF

Genome-scale metabolic reconstructions include all known biochemical reactions occurring in a cell. A typical application is the prediction of potential drug targets for cancer treatment. The precision of these predictions relies on the definition of the objective function.

View Article and Find Full Text PDF

Currently, the development of new effective drugs for cancer therapy is not only hindered by development costs, drug efficacy, and drug safety but also by the rapid occurrence of drug resistance in cancer. Hence, new tools are needed to study the underlying mechanisms in cancer. Here, we discuss the current use of metabolic modelling approaches to identify cancer-specific metabolism and find possible new drug targets and drugs for repurposing.

View Article and Find Full Text PDF

Background: Metabolic rewiring allows cancer cells to sustain high proliferation rates. Thus, targeting only the cancer-specific cellular metabolism will safeguard healthy tissues.

Methods: We developed the very efficient FASTCORMICS RNA-seq workflow (rFASTCORMICS) to build 10,005 high-resolution metabolic models from the TCGA dataset to capture metabolic rewiring strategies in cancer cells.

View Article and Find Full Text PDF

By modulating the human gut microbiome, prebiotics and probiotics (combinations of which are called synbiotics) may be used to treat diseases such as colorectal cancer (CRC). Methodological limitations have prevented determining the potential combinatorial mechanisms of action of such regimens. We expanded our HuMiX gut-on-a-chip model to co-culture CRC-derived epithelial cells with a model probiotic under a simulated prebiotic regimen, and we integrated the multi-omic results with in silico metabolic modeling.

View Article and Find Full Text PDF