Publications by authors named "Tamara B Aigner"

Purpose: Selenium nanoparticles (Se NPs) are promising antibacterial agents to tackle the growing problem of antimicrobial resistance. The aim of this study was to fabricate Se NPs with a net positive charge to enhance their antibacterial efficacy.

Methods: Se NPs were coated with a positively charged protein - recombinant spider silk protein eADF4(κ16) - to give them a net positive surface charge.

View Article and Find Full Text PDF

Cardiac tissue engineering is a promising approach to treat cardiovascular diseases, which are a major socio-economic burden worldwide. An optimal material for cardiac tissue engineering, allowing cardiomyocyte attachment and exhibiting proper immunocompatibility, biocompatibility and mechanical characteristics, has not yet emerged. An additional challenge is to develop a fabrication method that enables the generation of proper hierarchical structures and constructs with a high density of cardiomyocytes for optimal contractility.

View Article and Find Full Text PDF

There has been a significant increase in the use of sensitive biological components, e.g., growth factors or enzymes, in implanted scaffolds/devices.

View Article and Find Full Text PDF

Silk is mostly known as a luxurious textile, which originates from silkworms first cultivated in China. A deeper look into the variety of silk reveals that it can be used for much more, in nature and by humanity. For medical purposes, natural silks were recognized early as a potential biomaterial for surgical threads or wound dressings; however, as biomedical engineering advances, the demand for high-performance, naturally derived biomaterials becomes more pressing and stringent.

View Article and Find Full Text PDF

Photo-polymerizable scaffolds are designed and prepared via short chain poly(organo)phosphazene building blocks bearing glycine allylester moieties. The polyphosphazene was combined with a trifunctional thiol and divinylester in various ratios, followed by thiol-ene photo-polymerization to obtain porous matrices. Degradation studies under aqueous conditions showed increasing rates in correlation with the polyphosphazene content.

View Article and Find Full Text PDF