Publications by authors named "Tamar Ziehm"

Unlabelled: The accumulation and aggregation of alpha-synuclein (α-Syn) are pathological processes associated with Parkinson's disease, indicating that the regulation of protein is a crucial etiopathological mechanism. Interestingly, human serum and cerebrospinal fluid contain autoantibodies that recognize α-Syn. This potentially demonstrates an already existing, naturally decomposing, and protective system.

View Article and Find Full Text PDF

Effective therapies are urgently needed to safely target TDP-43 pathology as it is closely associated with the onset and development of devastating diseases such as frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). In addition, TDP-43 pathology is present as a co-pathology in other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Our approach is to develop a TDP-43-specific immunotherapy that exploits Fc gamma-mediated removal mechanisms to limit neuronal damage while maintaining physiological TDP-43 function.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common neurodegenerative disease; thus, the search for a cure or causal therapy has become necessary. Despite intense research on this topic in recent decades, there is no curative therapy up today, and also no disease-modifying treatment has been approved. As promising approach passive immunization strategies have thereby come forth.

View Article and Find Full Text PDF

Alzheimer's disease, a multifactorial incurable disorder, is mainly characterised by progressive neurodegeneration, extracellular accumulation of amyloid-β protein (Aβ), and intracellular aggregation of hyperphosphorylated tau protein. During the last years, Aβ oligomers have been claimed to be the disease causing agent. Consequently, development of compounds that are able to disrupt already existing Aβ oligomers is highly desirable.

View Article and Find Full Text PDF

Diffusible amyloid-β (Aβ) oligomers are currently presumed to be the most cytotoxic Aβ assembly and held responsible to trigger the pathogenesis of Alzheimer's disease (AD). Thus, Aβ oligomers are a prominent target in AD drug development. Previously, we reported on our solely D-enantiomeric peptide D3 and its derivatives as AD drug candidates.

View Article and Find Full Text PDF

A pathological hallmark of Alzheimer's disease (AD) is the aggregation of amyloid-β peptides (Aβ) into fibrils, leading to deposits in cerebral parenchyma and vessels known as cerebral amyloid angiopathy (CAA). Platelets are major players of hemostasis but are also implicated in AD. Recently we provided strong evidence for a direct contribution of platelets to AD pathology.

View Article and Find Full Text PDF

Inhibition of the self-assembly process of amyloid-beta and even more the removal of already existing toxic amyloid-beta assemblies represent promising therapeutic strategies against Alzheimer's disease. To approach this aim, we selected a d-enantiomeric peptide by phage-display based on the interaction with amyloid-beta monomers. This lead compound was successfully optimized by peptide microarrays with respect to its affinity and specificity to the target resulting in d-peptides with both increased hydrophobicity and net charge.

View Article and Find Full Text PDF

Pressure can shift the polymer-monomer equilibrium of Aβ, increasing pressure first leads to a release of Aβ-monomers, surprisingly at pressures higher than 180 MPa repolymerization is induced. By high pressure NMR spectroscopy, differences of partial molar volumes ΔV0 and compressibility factors Δβ' of polymerization were determined at different temperatures. The d-enantiomeric peptides RD2 and RD2D3 bind to monomeric Aβ with affinities substantially higher than those determined for fibril formation.

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF) is a chemokine-like inflammatory cytokine, which plays a pivotal role in the pathogenesis of inflammatory and cardiovascular diseases as well as cancer. We previously identified MIF as a novel B cell chemokine that promotes B cell migration through non-cognate interaction with the CXC chemokine receptor CXCR4 and CD74, the surface form of MHC class II invariant chain. In this study, we have analyzed the regulation of the MIF receptors under inflammatory conditions by investigating the impact of lipopolysaccharide (LPS), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) on CD74 and CXCR4 expression in B lymphocytes.

View Article and Find Full Text PDF

Accumulating evidence suggests an important role for the Disrupted-in-Schizophrenia 1 (DISC1) protein in neurodevelopment and chronic mental illness. In particular, the C-terminal 300 amino acids of DISC1 have been found to mediate important protein-protein interactions and to harbor functionally important phosphorylation sites and disease-associated polymorphisms. However, long disordered regions and oligomer-forming subdomains have so far impeded structural analysis.

View Article and Find Full Text PDF

Currently, there are no causative or disease modifying treatments available for Alzheimer's disease (AD). Previously, it has been shown that D3, a small, fully d-enantiomeric peptide is able to eliminate low molecular weight Aβ oligomers in vitro, enhance cognition and reduce plaque load in AD transgenic mice. To further characterise the therapeutic potential of D3 towards N-terminally truncated and pyroglutamated Aβ (pEAβ(3-42)) we tested D3 and its head-to-tail tandem derivative D3D3 both in vitro and in vivo in the new mouse model TBA2.

View Article and Find Full Text PDF

Alzheimer's disease (AD), until now, is an incurable progressive neurodegenerative disease. To target toxic amyloid β oligomers in AD patients' brains and to convert them into non-toxic aggregation-incompetent species, we designed peptides consisting solely of d-enantiomeric amino acid residues. The original lead compound was named D3 and several D3 derivatives were designed to enhance beneficial properties.

View Article and Find Full Text PDF

While amyloid-β protein (Aβ) aggregation into insoluble plaques is one of the pathological hallmarks of Alzheimer's disease (AD), soluble oligomeric Aβ has been hypothesized to be responsible for synapse damage, neurodegeneration, learning, and memory deficits in AD. Here, we investigate the in vitro and in vivo efficacy of the D-enantiomeric peptide RD2, a rationally designed derivative of the previously described lead compound D3, which has been developed to efficiently eliminate toxic Aβ42 oligomers as a promising treatment strategy for AD. Besides the detailed in vitro characterization of RD2, we also report the results of a treatment study of APP/PS1 mice with RD2.

View Article and Find Full Text PDF

Amyloid-beta (Aβ) oligomers are thought to be causative for the development and progression of Alzheimer's disease (AD). Starting from the Aβ oligomer eliminating d-enantiomeric peptide D3, we developed and applied a two-step procedure based on peptide microarrays to identify D3 derivatives with increased binding affinity and specificity for monomeric Aβ(1-42) to further enhance the Aβ oligomer elimination efficacy. Out of more than 1000 D3 derivatives, we selected seven novel d-peptides, named ANK1 to ANK7, and characterized them in more detail in vitro.

View Article and Find Full Text PDF

Pyroglutamate-modified amyloid-β (pEAβ) has been described as a relevant Aβ species in Alzheimer's-disease-affected brains, with pEAβ (3-42) as a dominant isoform. Aβ (1-40) and Aβ (1-42) have been well characterized under various solution conditions, including aqueous solutions containing trifluoroethanol (TFE). To characterize structural properties of pEAβ (3-42) possibly underlying its drastically increased aggregation propensity compared to Aβ (1-42), we started our studies in various TFE-water mixtures and found striking differences between the two Aβ species.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder and the most common type of dementia. Until now, there is no curative therapy available. Previously, we selected the amyloid-beta (Aβ) targeting peptide D3 consisting of 12 d-enantiomeric amino acid residues by mirror image phage display as a potential drug candidate for the treatment of AD.

View Article and Find Full Text PDF

The aggregation of amyloid-β (Aβ) is postulated to be the crucial event in Alzheimer's disease (AD). In particular, small neurotoxic Aβ oligomers are considered to be responsible for the development and progression of AD. Therefore, elimination of thesis oligomers represents a potential causal therapy of AD.

View Article and Find Full Text PDF

Peptides are more and more considered for the development of drug candidates. However, they frequently exhibit severe disadvantages such as instability and unfavourable pharmacokinetic properties. Many peptides are rapidly cleared from the organism and oral bioavailabilities as well as in vivo half-lives often remain low.

View Article and Find Full Text PDF

Purpose: It has been shown that amyloid β (Aβ) oligomers play an important role in the pathology of Alzheimer's disease (AD). D3, a peptide consisting solely of D-enantiomeric amino acid residues, was developed to specifically eliminate Aβ oligomers and is therapeutically active in transgenic AD mice. D-peptides have several advantages over L-peptides, but little is known about their pharmacokinetic potential in vivo.

View Article and Find Full Text PDF

Targeting toxic amyloid beta (Aβ) oligomers is currently a very attractive drug development strategy for treatment of Alzheimer´s disease. Using mirror-image phage display against Aβ1-42, we have previously identified the fully D-enantiomeric peptide D3, which is able to eliminate Aβ oligomers and has proven therapeutic potential in transgenic Alzheimer´s disease animal models. However, there is little information on the pharmacokinetic behaviour of D-enantiomeric peptides in general.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1id7a0plbe6kekob3qoc6rhpcmi5cibq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once