A major obstacle to studying DNA replication is that it involves asynchronous and highly delocalized events. A reversible replication barrier overcomes this limitation and allows replication fork movement to be synchronized and localized, facilitating the study of replication fork function and replication coupled repair. Here we provide details on establishing a reversible replication barrier in vitro and using it to monitor different aspects of DNA replication.
View Article and Find Full Text PDFTopological stress can cause converging replication forks to stall during termination of vertebrate DNA synthesis. However, replication forks ultimately overcome fork stalling, suggesting that alternative mechanisms of termination exist. Using proteomics in Xenopus egg extracts, we show that the helicase RTEL1 and the replisome protein MCM10 are highly enriched on chromatin during fork convergence and are crucially important for fork convergence under conditions of topological stress.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2023
Genotoxins cause nascent strand degradation (NSD) and fork reversal during DNA replication. NSD and fork reversal are crucial for genome stability and are exploited by chemotherapeutic approaches. However, it is unclear how NSD and fork reversal are triggered.
View Article and Find Full Text PDFAm J Cancer Res
November 2022
When a replication fork encounters a nick in the parental DNA, the replisome dissociates and the replication fork structure is lost. This outcome is referred to as replication fork "collapse." Collapsed forks can be highly cytotoxic and mutagenic if not appropriately repaired by the cell.
View Article and Find Full Text PDFTopoisomerase II (TOP2) unlinks chromosomes during vertebrate DNA replication. TOP2 "poisons" are widely used chemotherapeutics that stabilize TOP2 complexes on DNA, leading to cytotoxic DNA breaks. However, it is unclear how these drugs affect DNA replication, which is a major target of TOP2 poisons.
View Article and Find Full Text PDFMethods Mol Biol
March 2022
DNA replication is crucial for cell viability and genome integrity. Despite its crucial role in genome duplication, the final stage of DNA replication, which is termed termination, is relatively unexplored. Our knowledge of termination is limited by cellular approaches to study DNA replication, which cannot readily detect termination.
View Article and Find Full Text PDFBackground: Hormonal therapy using progestins, acting through the progesterone receptor (PR), is a well-established method to treat uterine endometrial hyperplasia and carcinoma. Recent population studies indicate that progestin exposure significantly reduces the incidence of ovarian, pancreatic and lung cancers in addition to endometrial cancer in women. This unexpected differentiating function of progestin in organs outside of the reproductive system led us to hypothesize that progestins/PR are protective against cancer development and progression in many tumor types.
View Article and Find Full Text PDFEndometrial cancer, the most common gynecologic malignancy, is a hormonally-regulated disease. Response to progestin therapy positively correlates with hormone receptor expression, in particular progesterone receptor (PR). However, many advanced tumors lose PR expression.
View Article and Find Full Text PDF