Publications by authors named "Tamar Caceres"

Protein arginine methyltransferase 7 (PRMT7) is unique within the PRMT family as it is the only isoform known to exclusively make monomethylarginine (MMA). Given its role in epigenetics, the mechanistic basis for the strict monomethylation activity is under investigation. It is thought that PRMT7 enzymes are unable to add a second methyl group because of steric hindrance in the active site that restricts them to monomethylation.

View Article and Find Full Text PDF

Protein arginine methyltransferases (PRMTs) catalyze the post-translational methylation of specific arginyl groups within targeted proteins to regulate fundamental biological responses in eukaryotic cells. The major Type I PRMT enzyme, PRMT1, strictly generates monomethyl arginine (MMA) and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA). Multiple diseases can arise from the dysregulation of PRMT1, including heart disease and cancer, which underscores the need to elucidate the origin of product specificity.

View Article and Find Full Text PDF

Many key cellular processes can be regulated by the seemingly simple addition of one, or two, methyl groups to arginine residues by the nine known mammalian protein arginine methyltransferases (PRMTs). The impact that arginine methylation has on cellular well-being is highlighted by the ever growing evidence linking PRMT dysregulation to disease states, which has marked the PRMTs as prominent pharmacological targets. This review is meant to orient the reader with respect to the structural features of the PRMTs that account for catalytic activity, as well as provide a framework for understanding how these enzymes are regulated.

View Article and Find Full Text PDF

Trypanosoma brucei protein arginine methyltransferase 7 (TbPRMT7) exclusively generates monomethylarginine (MMA), which directs biological consequences distinct from that of symmetric dimethylarginine (SDMA) and asymmetric dimethylarginine (ADMA). However, determinants controlling the strict monomethylation activity are unknown. We present the crystal structure of the TbPRMT7 active core in complex with S-adenosyl-L-homocysteine (AdoHcy) and a histone H4 peptide substrate.

View Article and Find Full Text PDF