Inappropriate surface expression of voltage-gated Ca(2+)channels (CaV) in pancreatic ß-cells may contribute to the development of type 2 diabetes. First, failure to increase intracellular Ca(2+) concentrations at the sites of exocytosis impedes insulin release. Furthermore, excessive Ca(2+) influx may trigger cytotoxic effects.
View Article and Find Full Text PDFA plethora of candidate genes have been identified for complex polygenic disorders, but the underlying disease mechanisms remain largely unknown. We explored the pathophysiology of type 2 diabetes (T2D) by analyzing global gene expression in human pancreatic islets. A group of coexpressed genes (module), enriched for interleukin-1-related genes, was associated with T2D and reduced insulin secretion.
View Article and Find Full Text PDFThe majority of genetic risk variants for type 2 diabetes (T2D) affect insulin secretion, but the mechanisms through which they influence pancreatic islet function remain largely unknown. We functionally characterized human islets to determine secretory, biophysical, and ultrastructural features in relation to genetic risk profiles in diabetic and nondiabetic donors. Islets from donors with T2D exhibited impaired insulin secretion, which was more pronounced in lean than obese diabetic donors.
View Article and Find Full Text PDF