Publications by authors named "Tamaki Endoh"

RNA performs various spatiotemporal functions in living cells. As the solution environments significantly affect the stability of RNA duplexes, a stability prediction of the RNA duplexes in diverse crowded conditions is required to understand and modulate gene expression in heterogeneously crowded intracellular conditions. Herein, we determined the nearest-neighbor (NN) parameters for RNA duplex formation when subjected to crowding conditions with an ionic concentration relevant to that found in cells.

View Article and Find Full Text PDF

Replication of RNA viruses is catalysed by virus-specific polymerases, which can be targets of therapeutic strategies. In this study, we used a selection strategy to identify endogenous RNAs from a transcriptome library derived from lung cells that interact with the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. Some of the selected RNAs weakened the activity of RdRp by forming G-quadruplexes.

View Article and Find Full Text PDF

Recent successes in construction of light-up RNA aptamers allowed fluorescence-based live-cell imaging of RNAs. In addition, light-up aptamers have been converted into signaling aptamers that enable fluorometric detection of small chemicals. To date, only a single target chemical has been detected at a time in cells.

View Article and Find Full Text PDF

Climate change negatively affects crop yield, which hinders efforts to reach agricultural sustainability and food security. Here, we show that a previously unidentified allele of the nitrate transporter gene is required to maintain high yield and high nitrogen use efficiency under high temperatures. We demonstrate that this tolerance to high temperatures in rice accessions harboring the HTNE-2 (high temperature resistant and nitrogen efficient-2) alleles from enhanced translation of the mRNA isoform and the decreased abundance of a unique small RNA (sNRT2.

View Article and Find Full Text PDF

The validity of the nearest-neighbour (NN) model was verified in an RNA pseudoknot (PK) structure. The thermodynamic parameters of the second hairpin stem (S2) region, which separates the PK from a hairpin structure, were monitored using CD and UV melting. Different PKs with identical NN base pairs in the S2 region exhibited similar thermodynamic parameters, highlighting the validity of the NN model in this RNA tertiary structure motif.

View Article and Find Full Text PDF

Sequence specific recognition and functional inhibition of biomedically relevant double-helical RNAs is highly desirable but remains a formidable problem. The present study demonstrates that electroporation of a triplex-forming peptide nucleic acid (PNA), modified with 2-aminopyridine (M) nucleobases, inhibited maturation of endogenous microRNA-197 in SH-SY5Y cells, while having little effect on maturation of microRNA-155 or -27a. In vitro RNA binding and Dicer inhibition assays suggested that the observed biological activity was most likely due to a sequence-specific PNA-RNA triplex formation that inhibited the activity of endonucleases responsible for microRNA maturation.

View Article and Find Full Text PDF

Non-coding RNAs are regarded as promising targets for the discovery of innovative drugs due to their abundance in the genome and their involvement in many biological processes. Phytochemicals (PCs) are the primary source of ligand-based drugs due to their broad spectrum of biological activities. Since many PCs are heterocyclic and have chemical groups potentially involved in the interaction with nucleic acids, detailed interaction analysis between PCs and RNA is crucial to explore the effect of PCs on RNA functions.

View Article and Find Full Text PDF

We previously synthesized thioflavin T (ThT) with a hydroxyethyl group introduced at the -position (ThT-HE), which binds predominantly to the parallel G-quadruplex (G4) structure found in c-Myc and emits strong fluorescence. In this study, to investigate the effects of introduced substituents on G4 binding and fluorescence emission, a ThT derivative in which the hydroxyl group of ThT-HE was replaced with an amino group (ThT-AE) was synthesized for the first time. Furthermore, three other -modified ThT derivatives (ThT-OE2, ThT-SP, and ThT-OE11) having different substituent structures were synthesized by the N-acylation of the terminal amino group of ThT-AE, and their G4-binding and emission properties were investigated.

View Article and Find Full Text PDF

The stability of Watson-Crick paired RNA/DNA hybrids is important for designing optimal oligonucleotides for ASO (Antisense Oligonucleotide) and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas9 techniques. Previous nearest-neighbour (NN) parameters for predicting hybrid stability in a 1 M NaCl solution, however, may not be applicable for predicting stability at salt concentrations closer to physiological condition (e.g.

View Article and Find Full Text PDF

The intracellular environment is crowded and heterogeneous. Although the thermodynamic stability of nucleic acid duplexes is predictable in dilute solutions, methods of predicting such stability under specific intracellular conditions are not yet available. We recently showed that the nearest-neighbor model for self-complementary DNA is valid under molecular crowding condition of 40% polyethylene glycol with an average molecular weight of 200 (PEG 200) in 100 mM NaCl.

View Article and Find Full Text PDF

An RNA signaling aptamer is composed of two units: a sensing aptamer that binds the input target molecule and a working aptamer that binds the output target molecule to result in a detectable signal. A conformational change of the signaling aptamer that induces an allosteric interaction with the output target molecule in response to the input target molecule depends on a junction region, which connects the two aptamer units. Efficient and effective optimization of the junction region remains a technical challenge.

View Article and Find Full Text PDF

During translation, intracellular mRNA folds co-transcriptionally and must refold following the passage of ribosome. The mRNAs can be entrapped in metastable structures during these folding events. In the present study, we evaluated the conformational dynamics of the kinetically favored, metastable, and hairpin-like structure, which disturbs the thermodynamically favored G-quadruplex structure, and its effect on co-transcriptional translation in prokaryotic cells.

View Article and Find Full Text PDF

RNA aptamers are useful building blocks for constructing functional nucleic acid-based nanoarchitectures. The abilities of aptamers to recognize specific ligands have also been utilized for various biotechnological applications. Solution conditions, which can differ depending on the application, impact the affinity of the aptamers, and thus it is important to optimize the aptamers for the solution conditions to be employed.

View Article and Find Full Text PDF

Recent advancement in nucleic acid techniques inside cells demands the knowledge of the stability of nucleic acid structures in molecular crowding. The nearest-neighbor model has been successfully used to predict thermodynamic parameters for the formation of nucleic acid duplexes, with significant accuracy in a dilute solution. However, knowledge about the applicability of the model in molecular crowding is still limited.

View Article and Find Full Text PDF

Co-transcriptional RNA folding results in dynamic behavior of RNA transcripts. Extra stimuli can perturb the stability of the nascent RNA and alter its conformation and function. Here, an artificial RNA conformational switch, which consists of a 5' aptamer unit for sensing thiamine pyrophosphate (TPP) and a 3' working unit (TAR RNA) that binds Tat peptide connected by a switching sequence, was designed and cotranscriptionally functionalized.

View Article and Find Full Text PDF

In bacteria, the binding between the riboswitch aptamer domain and ligand is regulated by environmental cues, such as low Mg in macrophages during pathogenesis to ensure spatiotemporal expression of virulence genes. Binding was investigated between the flavin mononucleotide (FMN) riboswitch aptamer and its anionic ligand in the presence of molecular crowding agent without Mg ion, which mimics pathogenic conditions. Structural, kinetic, and thermodynamic analyses under the crowding revealed more dynamic conformational rearrangements of the FMN riboswitch aptamer compared to dilute Mg -containing solution.

View Article and Find Full Text PDF

Molecular crowding conditions provided by high concentration of cosolutes are utilized for characterization of biomolecules in cell-mimicking environment and development of drug-delivery systems. In this context, (poly)ethylene glycols are often used for studying non-canonical DNA structures termed G-quadruplexes, which came into focus by emerging structural biology findings and new therapeutic drug design approaches. Recently, several reports were made arguing against using (poly)ethylene glycols in role of molecular crowding agents due to their direct impact on DNA G-quadruplex stability and topology.

View Article and Find Full Text PDF

Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes.

View Article and Find Full Text PDF

Gene expression involves concurrent and consecutive events of unidirectional nature, such as transcription occurring from 5' to 3' end and translation from N to C terminus. Recent functional studies have shown the importance of kinetically coupled nucleic acid folding events that influence gene expression processes. For example, mRNA conformational dynamics during transcription and translation regulate gene expression and subsequent protein functionalization.

View Article and Find Full Text PDF

Peptide nucleic acid (PNA) modified with unnatural nucleobases enables the formation of a highly stable triplex with a double-stranded RNA at physiological pH. In this communication, we evaluated kinetics and thermodynamics of PNA/RNA triplex formation as a function of both pH and temperature. Protonation entropy was found to be the major factor responsible for the destabilization of the triplex and for the progressive decrease in the association rate at more basic pHs.

View Article and Find Full Text PDF

Non-coding RNAs play important roles in cellular homeostasis and are involved in many human diseases including cancer. Intermolecular RNA-RNA interactions are the basis for the diverse functions of many non-coding RNAs. Herein, we show how the presence of tRNA influences the equilibrium between hairpin and G-quadruplex conformations in the 5' untranslated regions of oncogenes and model sequences.

View Article and Find Full Text PDF

Correction for 'Triplex-forming peptide nucleic acid modified with 2-aminopyridine as a new tool for detection of A-to-I editing' by Chiara Annoni et al., Chem. Commun.

View Article and Find Full Text PDF

RNA editing from adenosine to inosine (A-to-I editing) is one of the mechanisms that regulate and diversify the transcriptome. Here, a triplex-forming peptide nucleic acid (PNA) modified with a 2-aminopyridine nucleobase was applied for the recognition of the A-to-I editing event in double-stranded RNAs. The triplex-forming PNA enabled sequence-specific detection of single nucleobase editing at sub-nanomolar concentration.

View Article and Find Full Text PDF

G-quadruplexes formed on DNA and RNA can be roadblocks to movement of polymerases and ribosome on template nucleotides. Although folding and unfolding processes of the G-quadruplexes are deliberately studied in vitro, how the mechanical and physical properties of the G-quadruplexes affect intracellular biological systems is still unclear. In this study, mRNAs with G-quadruplex forming sequences located either in the 5' untranslated region (UTR) or in the open reading frame (ORF) were constructed to evaluate positional effects of the G-quadruplex on translation suppression in cells.

View Article and Find Full Text PDF