Regeneration of articular cartilage remains a challenge for patients who have undergone cartilage injury, osteochondritis dissecans and osteoarthritis. Here, we describe a new recombinant silk fibroin with basic fibroblast growth factor (bFGF) binding peptide, which has a genetically introduced sequence PLLQATLGGGS, named P7. In this study, we cultured a human mesenchymal cell line derived from bone marrow, UE6E7-16, in wild-type fibroin sponge (FS) and recombinant silk fibroin sponge with P7 peptide (P7 FS).
View Article and Find Full Text PDFThe development of useful biomaterials has resulted in significant advances in various fields of science and technology. The demand for new biomaterial designs and manufacturing techniques continues to grow, with the goal of building a sustainable society. In this study, two types of DNA-cationic surfactant complexes were synthesized using commercially available deoxyribonucleic acid from herring sperm DNA (hsDNA, <50 bp) and deoxyribonucleic acid from salmon testes DNA (stDNA, ~2000 bp).
View Article and Find Full Text PDFA simple method by which the functional peptide of Gly-Arg-Gly-Asp-Ser (GRGDS) is immobilized on the surface of silk fibroin (SF) films via Gly-Ala-Gly-Ala-Gly-Ser (GAGAGS) sequences is proposed. GAGAGS, a repeating amino acid sequence in the crystal region of Bombyx mori SF, performs a key role in interacting with and immobilizing SF molecules. Immobilization by this proposed method involves no chemical reaction, thereby preserving the original properties of the SF molecule.
View Article and Find Full Text PDFDecreased swallowing function increases the risk of choking and aspiration pneumonia. Videofluoroscopy and computed tomography allow for detailed observation of the swallowing movements but have radiation risks. Therefore, we developed a method using surface electromyography (sEMG) to noninvasively assess swallowing function without radiation exposure.
View Article and Find Full Text PDFIslet transplantation is a promising option for the clinical treatment of insulin-dependent diabetes, but a reliable islet cryopreservation/transplantation protocol should be established to overcome the donor shortage. The current study reports that a silk fibroin (SF) sponge disk can be used as a cryodevice for vitrification of large quantity pancreatic islets and the scaffold for subsequent subrenal transplantation in a rat model. The marginal islet mass (550 islet equivalents [IEQs]) on an SF sponge disk was vitrified-warmed and transplanted beneath the kidney capsule of a streptozotocin-induced diabetic rat with or without vascular endothelial growth factor (VEGF).
View Article and Find Full Text PDFRecently, bio-based electrospun nanofiber mats (ENMs) have gained substantial attention for preparing polymer-based biomaterials intended for use in cell culture. Herein, we prepared poly(ethylene-glycol 1,4-Cyclohexane dimethylene-isosorbide-terephthalate) (PEICT) ENMs using the electrospinning technique. Cell adhesion and cell viability of PEICT ENMs were checked by fibroblast cell culture.
View Article and Find Full Text PDFWe report the adaptability of rat islets vitrified-warmed on nylon mesh (NM) device or silk fibroin (SF) sponge disc for the normalization of the blood glucose level in rat models of diabetes. One-hundred rat islets were cryopreserved according to a minimum volume cooling protocol on an NM device or a solid surface vitrification protocol on an SF sponge disc. The recovery rate (97.
View Article and Find Full Text PDFScaffolds used for bone tissue engineering need to have a variety of features to accommodate bone cells. The scaffold should mimic natural bone, it should have appropriate mechanical strength, support cell differentiation to the osteogenic lineage, and offer adequate porosity to allow vascularization and bone in-growth. In this work, we aim at developing a new process to fabricate such materials by creating a porous composite material made of silk fibroin and cellulose as a suitable scaffold of bone tissue engineering.
View Article and Find Full Text PDFSilk fibroin produced by the domesticated silkworm, , has been studied widely as a substrate for tissue engineering applications because of its mechanical robustness and biocompatibility. However, it is often difficult to precisely tune silk fibroin's biological properties due to the lack of easy, reliable, and versatile methodologies for decorating it with functional molecules such as those of drugs, polymers, peptides, and enzymes necessary for specific applications. In this study we applied an azido-functionalized silk fibroin, , produced by a state-of-the-art biotechnology, genetic code expansion, to produce silk fibroin decorated with cell-repellent polyethylene glycol (PEG) chains for controlling the cell adhesion property of silk fibroin film.
View Article and Find Full Text PDFBackground: There are some clinical reports on dysphagia in patients with chronic obstructive pulmonary disease (COPD); however, its pathophysiology remains largely unknown.Changes in respiratory function occur in patients with COPD causing a decrease in tidal volume and an increase in respiratory rate (tachypnea). In addition, it leads to lack of coordination between respiration and swallowing.
View Article and Find Full Text PDFMinimum volume cooling (MVC) procedure has been successfully applied to vitrify mammalian oocytes, but high skill of capillary pipetting is required to load the oocytes on a cryodevice with a minimal volume (<1 μL) of vitrification solution (VS). Here we report a novel cryodevice for bovine oocyte vitrification, silk fibroin (SF) sheet multilayer, of which spontaneous absorption property can eliminate pipette operation for removal of excess VS. Based on physical stability and scanning electron microscopic observation, the SF sheet prepared from 1.
View Article and Find Full Text PDFThis study was designed to investigate whether cryosurvival of rat pancreatic islets can be improved by carboxylated ε-poly-l-lysine (CPLL). Islets isolated from Wistar × Brown-Norway F1 rats (101-200 μm in diameter) were cryopreserved in three vitrification solutions containing ethylene glycol (EG; 30%, v/v) and CPLL (0%, 10%, or 20%, v/v) by Cryotop protocol (10 islets per device). The post-warm survival rate of the islets vitrified in the presence of 20% CPLL (74%), assessed by FDA/PI double staining, was higher than those in 0% and 10% CPLL (65% and 66%, respectively).
View Article and Find Full Text PDFIn this study, the physical properties and the biocompatibility of electrospun silicone-modified polyurethane (PUSX) nanofibers were discussed and compared with PUSX films. To investigate the effects of different structures on the physical properties, tensile strength, elongation at break, Young's modulus, water retention, water contact angle (WCA) and thermal conductivity measurements were performed. To prove the in vitro biocompatibility of the materials, cell adhesion, cell proliferation, and cytotoxicity were studied by NIH3T3 mouse embryonic fibroblasts cells following by lactate dehydrogenase (LDH) analysis.
View Article and Find Full Text PDFIn this report, we designed and synthesized polyacrylonitrile/silver (PAN/AgNPs) nanofibers via an in-situ method to obtain a washable with high-dispersed silver nanoparticles membrane to form the hierarchically organized antibacterial mask to prevent the two-way effect of bacteria from person to environment and environment to person. For this objective, the electrospun PAN nanofibers were stabilized via the heating method. Different amounts of AgNPs were loaded into the PAN nanofibers by using silver nitrate and sodium hydroxide solutions.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2017
Non-woven mats of Bombyx mori silk fibroin were fabricated using electrospinning with an all aqueous solution at <10wt% without any co-existing water soluble polymer such as PEO. The fibroin aqueous solution electrospinnability was affected by the fibroin molecular weight and the spinning solution pH. Hot-water treatment without any alkaline reagent or soap produced higher molecular weight fibroin than the typical degumming process did.
View Article and Find Full Text PDFObjective: To investigate the effects of wearing complete dentures on pharyngeal shape for swallowing in edentulous older people.
Background: In the absence of complete dentures, edentulous older people often lose the occlusal support necessary to position the mandible, which leads to an anterosuperior shift of the mandible during swallowing. This may result in pharyngeal shape changes effecting swallowing function in older people.
J Biomed Mater Res B Appl Biomater
October 2016
Large osteochondral defects have been difficult to repair via tissue engineering treatments due to the lack of a sufficient number of source cells for repairing the defect and to the severe mechanical stresses affecting the replacement tissue. In the present study, whole-area osteochondral defects of rabbit patella were covered and wrapped with a fibroin sponge containing chondrocytes, with or without Green Fluorescent Protein (GFP) transgenic marking, on the surface facing the osteochondral defect. Five of eight osteochondral defects that were covered with the chondrocyte-seeded fibroin sponges showed hyaline cartilage-like repair containing no fibroin fragments at 6 weeks after surgery.
View Article and Find Full Text PDFA Förster/fluorescence resonance energy transfer (FRET)-based molecular tension sensor was originally reported by the fusion of intracellular molecules, which has contributed to the elucidation of cell mechanotransduction. However, it is still unclear whether recombinant tension sensors can detect forces in the extracellular environment. Here, we developed a recombinant FRET-based tension sensor (rFRET-TS) and immobilized it to a glass surface.
View Article and Find Full Text PDFSilk fibroin has attracted interest as a biomaterial, given its many excellent properties. Cell attachment to silk substrates is usually weaker than to standard culture dishes, and cells cultured on silk films or hydrogels typically form spheroids and micro-aggregates. However, too little is known about the higher order structures and behavior of fibroin under different conditions to explain the features of silk fibroin as a culture substrate.
View Article and Find Full Text PDF