Background And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.
Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.
Of the five human antibody isotypes, the function of IgD is the least well-understood, although various studies point to a role for IgD in mucosal immunity. IgD is also the least well structurally characterized isotype. Until recently, when crystal structures were reported for the IgD Fab, the only structural information available was a model for intact IgD based on solution scattering data.
View Article and Find Full Text PDFNaturally occurring protein nanocages like ferritin are self-assembled from multiple subunits. Because of their unique cage-like structure and biocompatibility, there is a growing interest in their biomedical use. A multipurpose and straightforward engineering approach does not exist for using nanocages to make drug-delivery systems by encapsulating hydrophilic or hydrophobic drugs and developing vaccines by surface functionalization with a protein like an antigen.
View Article and Find Full Text PDFThis is a case of a 26-year-old active duty male with a 1-year history of distal anterolateral leg pain and numbness which would persist following activity cessation. He was referred to physical therapy and eventually orthopedic surgery for bilateral anterior exertional compartment syndrome and underwent bilateral anterolateral fasciotomies. One year after surgery, he continued to have pain along the posterior aspect of his lower legs with residual numbness over his left dorsomedial foot.
View Article and Find Full Text PDFBMJ Open
March 2023
Objectives: To compare the accuracy of the Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation II (APACHE II) Scores in predicting mortality among intensive care unit (ICU) patients with sepsis in a low-income and middle-income country.
Design: A multicentre, cross-sectional study.
Setting: A total of 15 adult ICUs throughout Vietnam.
Some antimicrobial peptides (AMPs) have potent bactericidal activity and are being considered as potential alternatives to classical antibiotics. In response to an infection, such AMPs are often produced in animals alongside other peptides with low or no perceivable antimicrobial activity, whose role is unclear. Here we show that six AMPs from the Winter Flounder (WF) act in synergy against a range of bacterial pathogens and provide mechanistic insights into how this increases the cooperativity of the dose-dependent bactericidal activity and potency that enable therapy.
View Article and Find Full Text PDFPLoS One
October 2022
Background: The simple scoring systems for predicting the outcome of sepsis in intensive care units (ICUs) are few, especially for limited-resource settings. Therefore, this study aimed to evaluate the accuracy of the quick Sequential (Sepsis-Related) Organ Failure Assessment (qSOFA) score in predicting the mortality of ICU patients with sepsis in Vietnam.
Methods: We did a multicenter cross-sectional study of patients with sepsis (≥18 years old) presenting to 15 adult ICUs throughout Vietnam on the specified days (i.
Purpose: Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have emerged as effective treatments for patients with hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) advanced/metastatic breast cancer (mBC). Dedicated research efforts have been undertaken to find predictive biomarkers of response or resistance to these therapies although no molecular biomarkers for mBC have reached the clinic so far. This review aims to summarize and evaluate the performance of biomarkers in predicting progression-free survival in phase II and III clinical trials of CDK4/6 inhibitors in HR+/HER2- mBC.
View Article and Find Full Text PDFPurpose: Continuing medical education (CME) is a compulsory requirement for every health professional. However, to date, little is known about the effectiveness of CME in Vietnam. This study assessed CME programs based on attendees' perception and evaluation.
View Article and Find Full Text PDFPurpose: Healthcare workers (HCWs) are a crucial resource in the battle against the COVID-19 pandemic but are vulnerable to both SARS-CoV-2 infection and negative psychological consequences. This study evaluated HCWs' emotions, stressor experiences and coping strategies during the pandemic.
Methods: A cross-sectional study was conducted among HCWs at the University Medical Center in Ho Chi Minh City.
Sepsis is the most common cause of in-hospital deaths, especially from low-income and lower-middle-income countries (LMICs). This study aimed to investigate the mortality rate and associated factors from sepsis in intensive care units (ICUs) in an LMIC. We did a multicenter cross-sectional study of septic patients presenting to 15 adult ICUs throughout Vietnam on the 4 days representing the different seasons of 2019.
View Article and Find Full Text PDFDipalmitoyl-3-aza-dehydroxy-lysylphosphatidylglycerol (DP3adLPG), is a chemically stable synthetic analogue of the bacterial lipid lysylphosphatidylglycerol (LPG), designed as a substitute for the notoriously labile native lipid in biophysical investigations. In Staphylococcus aureus, LPG is known to play a role in resistance to antibiotics by altering membrane charge properties in response to environmental stress, but little is known about how LPG influences other bilayer physicochemical properties or lateral organisation, through the formation of complexes with lipids such as phosphatidylglycerol (PG). In this study we have investigated the different phases formed by biomimetic mixtures of 3adLPG and PG in different thermotropic states, using neutron diffraction and electron microscopy.
View Article and Find Full Text PDFPeptide aptamers are short amino acid chains that are capable of binding specifically to ligands in the same way as their much larger counterparts, antibodies. Ligands of therapeutic interest that can be targeted are other peptide chains or loops located on the surface of protein receptors (e.g.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are a potential alternative to classical antibiotics that are yet to achieve a therapeutic breakthrough for treatment of systemic infections. The antibacterial potency of pleurocidin, an AMP from Winter Flounder, is linked to its ability to cross bacterial plasma membranes and seek intracellular targets while also causing membrane damage. Here we describe modification strategies that generate pleurocidin analogues with substantially improved, broad spectrum, antibacterial properties, which are effective in murine models of bacterial lung infection.
View Article and Find Full Text PDFThe substantial rise in multidrug-resistant bacterial infections is a current global imperative. Cumulative efforts to characterize antimicrobial resistance in bacteria has demonstrated the spread of six families of multidrug efflux pumps, of which resistance-nodulation-cell division (RND) is the major mechanism of multidrug resistance in Gram-negative bacteria. RND is composed of a tripartite protein assembly and confers resistance to a range of unrelated compounds.
View Article and Find Full Text PDFThe ribosomally produced antimicrobial peptides of bacteria (bacteriocins) represent an unexplored source of membrane-active antibiotics. We designed a library of linear peptides from a circular bacteriocin and show that pore-formation dynamics in bacterial membranes are tunable via selective amino acid substitution. We observed antibacterial interpeptide synergy indicating that fundamentally altering interactions with the membrane enables synergy.
View Article and Find Full Text PDFIsothermal titration calorimetry (ITC) is conventionally used to acquire thermodynamic data for biological interactions. In recent years, ITC has emerged as a powerful tool to characterize enzyme kinetics. In this study, we have adapted a single-injection method (SIM) to study the kinetics of human soluble epoxide hydrolase (hsEH), an enzyme involved in cardiovascular homeostasis, hypertension, nociception, and insulin sensitivity through the metabolism of epoxy-fatty acids (EpFAs).
View Article and Find Full Text PDFFrogs such as Rana temporaria and Litoria aurea secrete numerous closely related antimicrobial peptides (AMPs) as an effective chemical dermal defence. Damage or penetration of the bacterial plasma membrane is considered essential for AMP activity and such properties are commonly ascribed to their ability to form secondary amphipathic, α-helix conformations in membrane mimicking milieu. Nevertheless, despite the high similarity in physical properties and preference for adopting such conformations, the spectrum of activity and potency of AMPs often varies considerably.
View Article and Find Full Text PDFHuman soluble epoxide hydrolase (hsEH) is an enzyme responsible for the inactivation of bioactive epoxy fatty acids, and its inhibition is emerging as a promising therapeutical strategy to target hypertension, cardiovascular disease, pain and insulin sensitivity. Here, we uncover the molecular bases of hsEH inhibition mediated by the endogenous 15-deoxy-Δ-Prostaglandin J (15d-PGJ). Our data reveal a dual inhibitory mechanism, whereby hsEH can be inhibited by reversible docking of 15d-PGJ in the catalytic pocket, as well as by covalent locking of the same compound onto cysteine residues C423 and C522, remote to the active site.
View Article and Find Full Text PDFLARP4A belongs to the ancient RNA-binding protein superfamily of La-related proteins (LARPs). In humans, it acts mainly by stabilizing mRNAs, enhancing translation and controlling polyA lengths of heterologous mRNAs. These activities are known to implicate its association with mRNA, protein partners and translating ribosomes, albeit molecular details are missing.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are a potential source of new molecules to counter the increase in antimicrobial resistant infections but a better understanding of their properties is required to understand their native function and for effective translation as therapeutics. Details of the mechanism of their interaction with the bacterial plasma membrane are desired since damage or penetration of this structure is considered essential for AMPs activity. Relatively modest modifications to AMPs primary sequence can induce substantial changes in potency and/or spectrum of activity but, hitherto, have not been predicted to substantially alter the mechanism of interaction with the bacterial plasma membrane.
View Article and Find Full Text PDFObjective: The aim of this study was to assess the real-world effectiveness and tolerability of palbociclib combined with endocrine therapy for the treatment of hormone receptor positive (HR-positive), human epidermal growth factor receptor 2 negative (HER2-negative), advanced/metastatic breast cancer that progressed on previous endocrine therapy, and to compare these results with the outcomes of the PALOMA-3 clinical trial.
Methods: This study was a retrospective observational cohort study including all patients who started with palbociclib in the St. Antonius Hospital between September 1, 2016 and April 1, 2018 for the treatment of HR-positive, HER2-negative advanced/metastatic breast cancer that progressed on previous endocrine therapy.
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDF