Ever since its discovery, the notion of the Berry phase has permeated all branches of physics and plays an important part in a variety of quantum phenomena. However, so far all its realizations have been based on a continuous evolution of the quantum state, following a cyclic path. Here we introduce and demonstrate a conceptually new manifestation of the Berry phase in light-driven crystals, in which the electronic wavefunction accumulates a geometric phase during a discrete evolution between different bands, while preserving the coherence of the process.
View Article and Find Full Text PDFSymmetries are ubiquitous in condensed matter physics, playing an important role in the appearance of different phases of matter. Nonlinear light matter interactions serve as a coherent probe for resolving symmetries and symmetry breaking via their link to selection rules of the interaction. In the extreme nonlinear regime, high harmonic generation (HHG) spectroscopy offers a unique spectroscopic approach to study this link, probing the crystal spatial properties with high sensitivity while opening new paths for selection rules in the XUV regime.
View Article and Find Full Text PDFSolid-state high-harmonic generation (HHG) by an intense infra-red (IR) laser field offers a new route to generate coherent attosecond light pulses in the extreme ultraviolet regime. The propagation of the IR driving field in the dense solid medium is accompanied by non-linear processes which shape the generating waveform. In this work, we introduce a monolithic scheme in which we both exploit the non-linear propagation to manipulate a two color driving field, as well as generate high harmonics within a single crystal.
View Article and Find Full Text PDFWe experimentally demonstrate first-order (fold) and second-order (cusp) catastrophes in the density of an atomic cloud reflected from an optical barrier in the presence of gravity and show their corresponding universal asymptotic behavior. These catastrophes, arising from classical dynamics, enable robust, field-free refocusing of an expanding atomic cloud with a wide velocity distribution. Specifically, the density attained at the cusp point in our experiment reached 65% of the peak density of the atoms in the trap prior to their release.
View Article and Find Full Text PDF