Purpose: This study developed and validated a novel deep learning radiomic biomarker to estimate response to immune checkpoint inhibitor (ICI) therapy in advanced non-small cell lung cancer (NSCLC) using real-world data (RWD) and clinical trial data.
Materials And Methods: Retrospective RWD of 1,829 patients with advanced NSCLC treated with PD-(L)1 ICIs were collected from 10 academic and community institutions in the United States and Europe. The RWD included data sets for discovery (Data Set A-Discovery, n = 1,173) and independent test (Data Set B, n = 458).
Background: Photon-counting CT (PCCT) systems acquire multiple spectral measurements at high spatial resolution, providing numerous image quality benefits while also increasing the amount of data that must be transferred through the gantry slip ring.
Purpose: This study proposes a lossy method to compress photon-counting CT data using eigenvector analysis, with the goal of providing image quality sufficient for applications that require a rapid initial reconstruction, such as to confirm anatomical coverage, scan quality, and to support automated advanced applications. The eigenbin compression method was experimentally evaluated on a clinical silicon PCCT prototype system.
Organ segmentation from CT images is critical in the early diagnosis of diseases, progress monitoring, pre-operative planning, radiation therapy planning, and CT dose estimation. However, data limitation remains one of the main challenges in medical image segmentation tasks. This challenge is particularly huge in pediatric CT segmentation due to children's heightened sensitivity to radiation.
View Article and Find Full Text PDFBackground: The constrained one-step spectral CT Image Reconstruction method (cOSSCIR) has been developed to estimate basis material maps directly from spectral CT data using a model of the polyenergetic x-ray transmissions and incorporating convex constraints into the inversion problem. This 'one-step' approach has been shown to stabilize the inversion in the case of photon-counting CT, and may provide similar benefits to dual-kV systems that utilize integrating detectors. Since the approach does not require the same rays be acquired for every spectral measurement, cOSSCIR can apply to dual energy protocols and systems used clinically, such as fast and slow kV switching systems and dual source scanning.
View Article and Find Full Text PDFBackground: Spectral CT material decomposition provides quantitative information but is challenged by the instability of the inversion into basis materials. We have previously proposed the constrained One-Step Spectral CT Image Reconstruction (cOSSCIR) algorithm to stabilize the material decomposition inversion by directly estimating basis material images from spectral CT data. cOSSCIR was previously investigated on phantom data.
View Article and Find Full Text PDFBackground: Breast-conserving surgery is aimed at removing all cancerous cells while minimizing the loss of healthy tissue. To ensure a balance between complete resection of cancer and preservation of healthy tissue, it is necessary to assess themargins of the removed specimen during the operation. Deep ultraviolet (DUV) fluorescence scanning microscopy provides rapid whole-surface imaging (WSI) of resected tissues with significant contrast between malignant and normal/benign tissue.
View Article and Find Full Text PDFMethods: This study used the Personalized Rapid Estimation of Dose in CT (PREDICT) tool to estimate patient-specific organ doses from CT image data. The PREDICT is a research tool that combines a linear Boltzmann transport equation solver for radiation dose map generation with deep learning algorithms for organ contouring. Computed tomography images from 74 subjects in the Medical Imaging Data Resource Center-RSNA International COVID-19 Open Radiology Database data set (chest CT of adult patients positive for COVID-19), which included expert annotations including "infectious opacities," were analyzed.
View Article and Find Full Text PDFPurpose: The constrained one-step spectral CT image reconstruction (cOSSCIR) algorithm with a nonconvex alternating direction method of multipliers optimizer is proposed for addressing computed tomography (CT) metal artifacts caused by beam hardening, noise, and photon starvation. The quantitative performance of cOSSCIR is investigated through a series of photon-counting CT simulations.
Methods: cOSSCIR directly estimates basis material maps from photon-counting data using a physics-based forward model that accounts for beam hardening.
Purpose: Organ autosegmentation efforts to date have largely been focused on adult populations, due to limited availability of pediatric training data. Pediatric patients may present additional challenges for organ segmentation. This paper describes a dataset of 359 pediatric chest-abdomen-pelvis and abdomen-pelvis Computed Tomography (CT) images with expert contours of up to 29 anatomical organ structures to aid in the evaluation and development of autosegmentation algorithms for pediatric CT imaging.
View Article and Find Full Text PDFPurpose: The risk of inducing cancer to patients undergoing CT examinations has motivated efforts for CT dose estimation, monitoring, and reduction, especially among pediatric population. The method investigated in this study is Acuros CTD (Varian Medical Systems, Palo Alto, CA), a deterministic linear Boltzmann transport equation (LBTE) solver aimed at generating rapid and reliable dose maps of CT exams. By applying organ contours, organ doses can also be obtained, thus patient-specific organ dose estimates can be provided.
View Article and Find Full Text PDFTo mitigate the substantial post-processing burden associated with adaptive optics scanning light ophthalmoscopy (AOSLO), we have developed an open-source, automated AOSLO image processing pipeline with both "live" and "full" modes. The live mode provides feedback during acquisition, while the full mode is intended to automatically integrate the copious disparate modules currently used in generating analyzable montages. The mean (±SD) lag between initiation and montage placement for the live pipeline was 54.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2021
We investigated the performance of a neural network (NN) material decomposition method under varying pileup conditions. Experiments were performed at tube current settings that provided count rates incident on the detector through air equal to 9%, 14%, 27%, 40%, and 54% of the maximum detector count rate. An NN was trained for each count-rate level using transmission measurements through known thicknesses of basis materials (PMMA and aluminum).
View Article and Find Full Text PDFSignificance: Re-excision rates for women with invasive breast cancer undergoing breast conserving surgery (or lumpectomy) have decreased in the past decade but remain substantial. This is mainly due to the inability to assess the entire surface of an excised lumpectomy specimen efficiently and accurately during surgery.
Aim: The goal of this study was to develop a deep-ultraviolet scanning fluorescence microscope (DUV-FSM) that can be used to accurately and rapidly detect cancer cells on the surface of excised breast tissue.
Purpose: Epidemiological evidence suggests an increased risk of cancer related to computed tomography (CT) scans, with children exposed to greater risk. The purpose of this work is to test the reliability of a linear Boltzmann transport equation (LBTE) solver for rapid and patient-specific CT dose estimation. This includes building a flexible LBTE framework for modeling modern clinical CT scanners and to validate the resulting dose maps across a range of realistic scanner configurations and patient models.
View Article and Find Full Text PDFPurpose: Spectral computed tomography (CT) material decomposition algorithms require accurate physics-based models or empirically derived models. This study investigates a machine learning algorithm and transfer learning techniques for Spectral CT imaging of K-edge contrast agents using simulated and experimental measurements.
Methods: A feed forward multilayer perceptron was implemented and trained on data acquired using a step wedge phantom containing acrylic, aluminum, and gadolinium materials.
Background: Adaptive radiation therapy (ART) is moving into the clinic rapidly. Capability of delineating the tumor change as a result of treatment response during treatment delivery is essential for ART. During image-guided radiation therapy (IGRT), a CT or cone-beam CT is taken at the time of daily setup and the tumor is not visible by eye in regions of soft tissue due to low contrast.
View Article and Find Full Text PDFPurpose: This study proposes an optical coherence tomography angiography (OCTA) frame-averaging method and investigates the effects of the number of frames acquired and averaged on metrics quantifying the foveal avascular zone (FAZ), vessel morphology, and parafoveal intercapillary area (PICA).
Methods: Ten OCTA frames were acquired for each of the 19 subjects without known retinal disease using the AngioVue OCTA system. For each subject, acquired frames were ranked by an image quality metric.
Purpose: To improve dose reporting of CT scans, patient-specific organ doses are highly desired. However, estimating the dose distribution in a fast and accurate manner remains challenging, despite advances in Monte Carlo methods. In this work, we present an alternative method that deterministically solves the linear Boltzmann transport equation (LBTE), which governs the behavior of x-ray photon transport through an object.
View Article and Find Full Text PDFPurpose: Identifying an appropriate tube current setting can be challenging when using iterative reconstruction due to the varying relationship between spatial resolution, contrast, noise, and dose across different algorithms. This study developed and investigated the application of a generalized detectability index ( ) to determine the noise parameter to input to existing automated exposure control (AEC) systems to provide consistent image quality (IQ) across different reconstruction approaches.
Methods: This study proposes a task-based automated exposure control (AEC) method using a generalized detectability index ( ).
Purpose: We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x-ray spectrum that can accurately model the x-ray transmission curves and reflects a realistic shape of the typical energy spectra of the CT system.
Methods: Spectrum estimation is posed as an optimization problem with x-ray spectrum as unknown variables, and a Kullback-Leibler (KL)-divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance numerical stability of the estimation process.
Purpose: This study developed and validated a Motion Artifact Quantification algorithm to automatically quantify the severity of motion artifacts on coronary computed tomography angiography (CCTA) images. The algorithm was then used to develop a Motion IQ Decision method to automatically identify whether a CCTA dataset is of sufficient diagnostic image quality or requires further correction.
Method: The developed Motion Artifact Quantification algorithm includes steps to identify the right coronary artery (RCA) regions of interest (ROIs), segment vessel and shading artifacts, and to calculate the motion artifact score (MAS) metric.
Purpose: Evaluation of noise texture information in CT images is important for assessing image quality. Noise texture is often quantified by the noise power spectrum (NPS), which requires numerous image realizations to estimate. This study evaluated fractal dimension for quantifying noise texture as a scalar metric that can potentially be estimated using one image realization.
View Article and Find Full Text PDFPurpose: This study quantified the performance of coronary artery motion artifact metrics relative to human observer ratings. Motion artifact metrics have been used as part of motion correction and best-phase selection algorithms for Coronary Computed Tomography Angiography (CCTA). However, the lack of ground truth makes it difficult to validate how well the metrics quantify the level of motion artifact.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2017
The proposed spectral CT method solves the constrained one-step spectral CT reconstruction (cOSSCIR) optimization problem to estimate basis material maps while modeling the nonlinear X-ray detection process and enforcing convex constraints on the basis map images. In order to apply the optimization-based reconstruction approach to experimental data, the presented method empirically estimates the effective energy-window spectra using a calibration procedure. The amplitudes of the estimated spectra were further optimized as part of the reconstruction process to reduce ring artifacts.
View Article and Find Full Text PDF