Keypoint tracking algorithms can flexibly quantify animal movement from videos obtained in a wide variety of settings. However, it remains unclear how to parse continuous keypoint data into discrete actions. This challenge is particularly acute because keypoint data are susceptible to high-frequency jitter that clustering algorithms can mistake for transitions between actions.
View Article and Find Full Text PDFImage segmentation is commonly used to estimate the location and shape of plants and their external structures. Segmentation masks are then used to localize landmarks of interest and compute other geometric features that correspond to the plant's phenotype. Despite its prevalence, segmentation-based approaches are laborious (requiring extensive annotation to train) and error-prone (derived geometric features are sensitive to instance mask integrity).
View Article and Find Full Text PDFHow do social factors impact the brain and contribute to increased alcohol drinking? We found that social rank predicts alcohol drinking, where subordinates drink more than dominants. Furthermore, social isolation escalates alcohol drinking, particularly impacting subordinates who display a greater increase in alcohol drinking compared to dominants. Using cellular resolution calcium imaging, we show that the basolateral amygdala-medial prefrontal cortex (BLA-mPFC) circuit predicts alcohol drinking in a rank-dependent manner, unlike non-specific BLA activity.
View Article and Find Full Text PDFImage segmentation is commonly used to estimate the location and shape of plants and their external structures. Segmentation masks are then used to localize landmarks of interest and compute other geometric features that correspond to the plant's phenotype. Despite its prevalence, segmentation-based approaches are laborious (requiring extensive annotation to train), and error-prone (derived geometric features are sensitive to instance mask integrity).
View Article and Find Full Text PDFBehavioral interactions within the nuclear family play a pivotal role in the emergence of agency: the capacity to regulate physiological, psychological and social needs. While behaviors may develop over days or weeks in line with nervous system maturation, individual behaviors can occur on sub-second time scales making it challenging to track development in lab studies with brief observation periods, or in field studies with limited temporal precision and animal identification. Here we study development in families of gerbils, a highly social rodent, collecting tens of millions of behavior time points and implementing machine learning methods to track individual subjects.
View Article and Find Full Text PDFKeypoint tracking algorithms have revolutionized the analysis of animal behavior, enabling investigators to flexibly quantify behavioral dynamics from conventional video recordings obtained in a wide variety of settings. However, it remains unclear how to parse continuous keypoint data into the modules out of which behavior is organized. This challenge is particularly acute because keypoint data is susceptible to high frequency jitter that clustering algorithms can mistake for transitions between behavioral modules.
View Article and Find Full Text PDFRecently developed methods for video analysis, especially models for pose estimation and behavior classification, are transforming behavioral quantification to be more precise, scalable, and reproducible in fields such as neuroscience and ethology. These tools overcome long-standing limitations of manual scoring of video frames and traditional 'center of mass' tracking algorithms to enable video analysis at scale. The expansion of open-source tools for video acquisition and analysis has led to new experimental approaches to understand behavior.
View Article and Find Full Text PDFSocial isolation, particularly in early life, leads to deleterious physiological and behavioral outcomes. Here, we leverage new high-throughput tools to comprehensively investigate the impact of isolation in the bumblebee, Bombus impatiens, from behavioral, molecular, and neuroanatomical perspectives. We reared newly emerged bumblebees in complete isolation, in small groups, or in their natal colony, and then analyzed their behaviors while alone or paired with another bee.
View Article and Find Full Text PDFThe desire to understand how the brain generates and patterns behavior has driven rapid methodological innovation in tools to quantify natural animal behavior. While advances in deep learning and computer vision have enabled markerless pose estimation in individual animals, extending these to multiple animals presents unique challenges for studies of social behaviors or animals in their natural environments. Here we present Social LEAP Estimates Animal Poses (SLEAP), a machine learning system for multi-animal pose tracking.
View Article and Find Full Text PDFBackground: In recent years, there has been an increase of interest in plant behaviour as represented by growth-driven responses. These are generally classified into nastic (internally driven) and tropic (environmentally driven) movements. Nastic movements include circumnutations, a circular movement of plant organs commonly associated with search and exploration, while tropisms refer to the directed growth of plant organs toward or away from environmental stimuli, such as light and gravity.
View Article and Find Full Text PDFSustained changes in mood or action require persistent changes in neural activity, but it has been difficult to identify the neural circuit mechanisms that underlie persistent activity and contribute to long-lasting changes in behavior. Here, we show that a subset of Doublesex+ pC1 neurons in the female brain, called pC1d/e, can drive minutes-long changes in female behavior in the presence of males. Using automated reconstruction of a volume electron microscopic (EM) image of the female brain, we map all inputs and outputs to both pC1d and pC1e.
View Article and Find Full Text PDFOver the past years, numerous methods have emerged to automate the quantification of animal behavior at a resolution not previously imaginable. This has opened up a new field of computational ethology and will, in the near future, make it possible to quantify in near completeness what an animal is doing as it navigates its environment. The importance of improving the techniques with which we characterize behavior is reflected in the emerging recognition that understanding behavior is an essential (or even prerequisite) step to pursuing neuroscience questions.
View Article and Find Full Text PDFObjective and automatic measurement of pain in mice remains a barrier for discovery in neuroscience. Here, we capture paw kinematics during pain behavior in mice with high-speed videography and automated paw tracking with machine and deep learning approaches. Our statistical software platform, PAWS (Pain Assessment at Withdrawal Speeds), uses a univariate projection of paw position over time to automatically quantify seven behavioral features that are combined into a single, univariate pain score.
View Article and Find Full Text PDFAs acquiring bigger data becomes easier in experimental brain science, computational and statistical brain science must achieve similar advances to fully capitalize on these data. Tackling these problems will benefit from a more explicit and concerted effort to work together. Specifically, brain science can be further democratized by harnessing the power of community-driven tools, which both are built by and benefit from many different people with different backgrounds and expertise.
View Article and Find Full Text PDFThe need for automated and efficient systems for tracking full animal pose has increased with the complexity of behavioral data and analyses. Here we introduce LEAP (LEAP estimates animal pose), a deep-learning-based method for predicting the positions of animal body parts. This framework consists of a graphical interface for labeling of body parts and training the network.
View Article and Find Full Text PDFCognitive and social capacities require postnatal experience, yet the pathways by which experience guides development are unknown. Here we show that the normal development of motor and nonmotor capacities requires cerebellar activity. Using chemogenetic perturbation of molecular layer interneurons to attenuate cerebellar output in mice, we found that activity of posterior regions in juvenile life modulates adult expression of eyeblink conditioning (paravermal lobule VI, crus I), reversal learning (lobule VI), persistive behavior and novelty-seeking (lobule VII), and social preference (crus I/II).
View Article and Find Full Text PDFDeciphering how brains generate behavior depends critically on an accurate description of behavior. If distinct behaviors are lumped together, separate modes of brain activity can be wrongly attributed to the same behavior. Alternatively, if a single behavior is split into two, the same neural activity can appear to produce different behaviors.
View Article and Find Full Text PDFIn this issue of Neuron, Watanabe et al. (2017) uncover how octopamine, an invertebrate norepinephrine analog, modulates the neural pathways that bias Drosophila males toward aggression.
View Article and Find Full Text PDFCerebellar granule cells, which constitute half the brain's neurons, supply Purkinje cells with contextual information necessary for motor learning, but how they encode this information is unknown. Here we show, using two-photon microscopy to track neural activity over multiple days of cerebellum-dependent eyeblink conditioning in mice, that granule cell populations acquire a dense representation of the anticipatory eyelid movement. Initially, granule cells responded to neutral visual and somatosensory stimuli as well as periorbital airpuffs used for training.
View Article and Find Full Text PDFBackground: Metagenomics enables the analysis of bacterial population composition and the study of emergent population features, such as shared metabolic pathways. Recently, we have shown that metagenomics datasets can be leveraged to characterize population-wide transcriptional regulatory networks, or meta-regulons, providing insights into how bacterial populations respond collectively to specific triggers. Here we formalize a Bayesian inference framework to analyze the composition of transcriptional regulatory networks in metagenomes by determining the probability of regulation of orthologous gene sequences.
View Article and Find Full Text PDF