The onset of stomatal closure reduces transpiration during drought. In seed plants, drought causes declines in plant water status which increases leaf endogenous abscisic acid (ABA) levels required for stomatal closure. There are multiple possible points of increased belowground resistance in the soil-plant atmospheric continuum that could decrease leaf water potential enough to trigger ABA production and the subsequent decreases in transpiration.
View Article and Find Full Text PDFThe phytohormone abscisic acid (ABA) is synthesised by plants during drought to close stomata and regulate desiccation tolerance pathways. Conifers and some angiosperms with embolism-resistant xylem show a peaking-type (p-type) response in ABA levels, in which ABA levels increase early in drought then decrease as drought progresses, declining to pre-stressed levels. The mechanism behind this dynamic remains unknown.
View Article and Find Full Text PDFSilicon (Si) frequently accumulates in plants tissues, mainly in roots of dicotyledons, such as cowpea. By contrast, Cadmium (Cd) is a metal that is extremely toxic to plant metabolism. This research aims to investigate if the deposition of Si in root can reduce Cd contents and minimize its negative effects on leaves, measuring gas exchange, chlorophyll fluorescence, antioxidant metabolism, photosynthetic pigments and growth, which may explain the possible role of Si in the attenuation of Cd toxicity in cowpea.
View Article and Find Full Text PDF