Maternal protein restriction delays the differentiation of epididymal mesenchymal cells in newborn rats. However, it's unclear if this delay persists until the full differentiation of the epididymal epithelium at 44 days postnatal. Thus, this study aimed to assess the impact of maternal protein reduction on 44-day-old rats' epididymal epithelium differentiation, following up on the observed delay in newborn animals.
View Article and Find Full Text PDFFront Cell Dev Biol
April 2022
Nutrition is an environmental factor able to activate physiological interactions between fetus and mother. Maternal protein restriction is able to alter sperm parameters associated with epididymal functions. Since correct development and functioning of the epididymides are fundamental for mammalian reproductive success, this study investigated the effects of maternal protein restriction on epididymal morphology and morphometry in rat offspring as well as on the expression of Src, Cldn-1, AR, ER, aromatase p450, and 5α-reductase in different stages of postnatal epididymal development.
View Article and Find Full Text PDFThe present study investigated the angiotensin II (Ang II) responses in rat femoral veins taken from 2-kidney-1clip (2K1C) hypertensive rats at 4 weeks after clipping, as well as the effects of exercise on these responses. In this manner, femoral veins taken from 2K1C rats kept at rest or exposed to acute exercise or to exercise training were challenged with Ang II or endothelin-1 (ET-1) in organ bath. Simultaneously, the presence of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) were determined in these preparations by western blotting.
View Article and Find Full Text PDFAims: Because an adequate protein supply is detrimental for the maintenance of folliculogenesis and ovulation, we evaluated the impact of maternal low protein diet on nutritional parameters, estrous cycle, ovarian histomorphometry, and on the expression of metabolic and survival signaling molecules in different follicular stages.
Main Methods: Twenty Wistar pregnant rats were divided into two groups: the normoprotein (NP) group, composed of animals that received 17% protein, and a low-protein (LP) group, composed of animals that received 6% protein during gestation and lactation period. After weaning, female rats were fed with standard diet until the 120-days-old.
The maternal nutritional status is essential to the health and well-being of the fetus. Maternal protein restriction during the perinatal stage causes sperm alterations in the offspring that are associated with epididymal dysfunctions. Vascular endothelial growth factor (VEGF) and its receptor, VEGFr-2, as well as aquaporins (AQPs) are important regulators of angiogenesis and the epididymal microenvironment and are associated with male fertility.
View Article and Find Full Text PDFBackground: Maternal protein restriction causes sperm alterations in the offspring, most of which are associated with epididymal functions. Because fluid reabsorption/secretion dynamics in the epididymal environment play important roles in the process of sperm maturation and concentration, we investigated the effects of maternal protein restriction on the expression of aquaporins (AQP1 and AQP9), vascular endothelial growth factor (VEGFa), and its receptor VEGFr-2 in different stages of postnatal epididymal development.
Methods: Pregnant rats were divided into groups that received normoprotein (17% protein) and low-protein diets (6% protein) during gestation and lactation.
Reprod Toxicol
January 2019
This study evaluated the protective effects of resveratrol on the prostate development of rats exposed to TCDD. Pregnant rats received TCDD (1 μg/kg) at GD15 and/or RES (20 mg/kg/day) from GD10 to PND21. Newborn and adult males from Control, TCDD, TCDD + RES and RES groups were euthanized and the prostate was excised.
View Article and Find Full Text PDFProstate morphogenesis is regulated by androgens hormones and modulated by morphogenetic proteins such as Bone Morphogenetic Proteins (BMPs). This study aims to investigate the effects on prostate development in male offspring and differentiation after gestational and lactational maternal exposure to Di-n-butyl-phthalate (DBP), an important environmental contamination. Pregnant Wistar rats received 100 or 500mg/kg of DBP (DBP100 and DBP500), by gavage, from gestation day 15 (GD15) until postnatal day 21 (PND21).
View Article and Find Full Text PDF