Antigen-naive IgM-producing B cells are atheroprotective, whereas mature B cells producing class-switched antibodies promote atherosclerosis. Activation-induced cytidine deaminase (AID), which mediates class switch recombination (CSR), would thus be expected to foster atherosclerosis. Yet, AID also plays a major role in the establishment of B cell tolerance.
View Article and Find Full Text PDFAtherosclerosis progression is a result of chronic and non-resolving inflammation, effective treatments for which still remain to be developed. We designed and developed branched poly(ß-amino ester) nanoparticles (NPs) containing plasmid DNA encoding IL-10, a potent anti-inflammatory cytokine to atherosclerosis. The NPs (NP-VHPK) are functionalized with a targeting peptide (VHPK) specific for VCAM-1, which is overexpressed by endothelial cells at sites of atherosclerotic plaque.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) continuously fine tune their immune modulatory properties, but how gene expression programs coordinate this immune cell plasticity is largely unknown. Selective mRNA translation, controlled by MNK1/MNK2 and mTOR pathways impinging on eIF4E, facilitates reshaping of proteomes without changes in abundance of corresponding mRNAs. Using polysome profiling developed for small samples we show that, during tumor growth, gene expression in TAMs is predominately modulated via mRNA-selective changes in translational efficiencies.
View Article and Find Full Text PDFFour-and-a-half LIM domain protein 2 (FHL2) is an adaptor molecule regulating various cellular processes, including signal transduction, transcription, and cell survival. Although involved in inflammation and immune responses, its role in the germinal center reaction and B cell maturation remains unknown. We found that FHL2 mouse spleens displayed enlarged follicles with more B cells.
View Article and Find Full Text PDFAims: Matrix metalloproteinases (MMPs) have been implicated in the development of hypertension in animal models and humans. Mmp2 deletion did not change Ang II-induced blood pressure (BP) rise. However, whether Mmp2 knockout affects angiotensin (Ang) II-induced vascular injury has not been tested.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
July 2017
Objective: Coagulation and inflammation are inter-related. Gas6 (growth arrest-specific 6) promotes venous thrombosis and participates to inflammation through endothelial-innate immune cell interactions. Innate immune cells can provide the initiating stimulus for venous thrombus development.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
May 2015
Objective: Four-and-a-half LIM domain protein-2 (FHL2) is expressed in endothelial cells, vascular smooth muscle cells, and leukocytes. It regulates cell survival, migration, and inflammatory response, but its role in atherogenesis is unknown.
Approach And Results: To investigate the role of FHL2 in atherosclerosis, FHL2-deficient mice were crossed with ApoE-deficient mice, to generate ApoE/FHL2-/- mice.
Rationale: Inhibition of four-and-a-half LIM domain protein-2 (FHL2) attenuates atherosclerotic lesion formation and increases endothelial cell migration. Early outgrowth cells (EOCs) contribute substantially to endothelial repair.
Objective: We investigated the role of FHL2 in the regulation of EOCs.
Aims: Vascular peroxisome proliferator-activated receptor γ (PPARγ) activation improves vascular remodelling and endothelial function in hypertensive rodents. The goal of this study was to determine that vascular smooth muscle cell (VSMC) PPARγ exerts a vascular protective role beyond its metabolic effects.
Methods And Results: We generated a model of adult inducible VSMC-specific Pparγ inactivation to test the hypothesis that PPARγ counteracts angiotensin (Ang) II-induced vascular remodelling and endothelial dysfunction.
Endothelial progenitor cells (EPCs) contribute to endothelial regeneration. Angiotensin II (Ang II) through Ang II type 1 receptor (AT(1)-R) activation plays an important role in vascular damage. The effect of Ang II on EPCs and the involved molecular mechanisms are incompletely understood.
View Article and Find Full Text PDFProprotein convertase (PC) 5/6 belongs to a family of secretory proteases involved in proprotein proteolysis. Several studies suggest a role for PC5/6 in cardiovascular disease. Because lethality at birth of mice lacking PC5/6 precluded elucidation of its function in the adult, we generated mice in which the gene of PC5/6 (pcsk5) is specifically inactivated in endothelial cells (ecKO), which are viable and do not exhibit overt abnormalities.
View Article and Find Full Text PDFThe mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) and the zinc finger transcription factor Kruppel-like factor-4 (KLF4) are involved in the regulation of redox homeostasis, apoptosis and cell proliferation. We have shown that estrogen exerts antioxidative actions via induction of MnSOD in cultured rat aortic vascular smooth muscle cells (VSMC). The purpose of the present study was to investigate whether estrogen inhibits VSMC proliferation via alteration of KLF4 and MnSOD expression.
View Article and Find Full Text PDFVascular oxidative stress and inflammation play an important role in angiotensin II-induced hypertension, and mitogen-activated protein kinases participate in these processes. We questioned whether mitogen-activated protein kinase-activated protein kinase 2 (MK2), a downstream target of p38 mitogen-activated protein kinase, is involved in angiotensin II-induced vascular responses. In vivo experiments were performed in wild-type and Mk2 knockout mice infused intravenously with angiotensin II.
View Article and Find Full Text PDFIn the present study, we tested the hypothesis that the PPARgamma (peroxisome-proliferator-activated receptor gamma) activator rosiglitazone improves vascular structure and function in aged hyperhomocysteinaemic MTHFR (methylene tetrahydrofolate reductase) gene heterozygous knockout (mthfr+/-) mice fed a HCD (high-cholesterol diet), a model of high cardiovascular risk. One-year-old mthfr+/- mice were fed or not HCD (6 mg x kg-1 of body weight x day-1) and treated or not with rosiglitazone (20 mg x kg-1 of body weight x day-1) for 90 days and compared with wild-type mice. Endothelium-dependent relaxation of carotid arteries was significantly impaired (-40%) only in rosiglitazone-treated HCD-fed mthfr+/- mice.
View Article and Find Full Text PDFThe metabolic syndrome represents a constellation of cardiovascular risk factors that promote the development of cardiovascular disease. Oxidative stress is a mediator of endothelial dysfunction and vascular remodeling. We investigated vascular dysfunction in the metabolic syndrome and the oxidant mechanisms involved.
View Article and Find Full Text PDFRationale: Aldosterone has been shown to induce vascular damage, endothelial dysfunction, and myocardial fibrosis, which depend in part on activation of angiotensin II (Ang II)-mediated pathways. However, mechanisms underlying crosstalk between Ang II type 1 receptor (AT(1)R) and mineralocorticoid receptor (MR) are mostly unknown.
Objectives: We tested whether the lack of Ang II type 1a receptor (AT(1a)R) or Ang II type 1b receptor (AT(1b)R) would decrease cellular effects induced by aldosterone.
Aims: Monocyte/macrophages participate in inflammatory responses that may play an important role in mineralocorticoid-induced vascular damage. We hypothesized that monocyte/macrophages modulate aldosterone effects on oxidative stress, endothelial function, and ultimately vascular stiffness.
Methods: Adult heterozygous osteopetrotic (Op/+) and wild-type mice were infused with aldosterone (600 microg/kg per day s.
Am J Physiol Heart Circ Physiol
October 2008
Oxidative stress is implicated in menopause-associated hypertension and cardiovascular disease. The role of antioxidants in this process is unclear. We questioned whether the downregulation of thioredoxin (TRX) is associated with oxidative stress and the development of hypertension and target-organ damage (cardiac hypertrophy) in a menopause model.
View Article and Find Full Text PDFThe thioredoxin (TRX) system consists of TRX, TRX reductase, and NAD(P)H, and is able to reduce reactive oxygen species (ROS) through interactions with the redox-active center of TRX, which in turn can be reduced by TRX reductase in the presence of NAD(P)H. Among the TRX superfamily is peroxiredoxin (PRX), a family of non-heme peroxidases that catalyzes the reduction of hydroperoxides into water and alcohol. The TRX system is active in the vessel wall and functions either as an important endogenous antioxidant or interacts directly with signaling molecules to influence cell growth, apoptosis, and inflammation.
View Article and Find Full Text PDFObjective: We hypothesized that downregulation of the antioxidant thioredoxin system contributes to oxidative stress in angiotensin II-induced hypertension. As oestrogen may protect against oxidative stress, we also evaluated whether the thioredoxin system, particularly in the heart, is differentially regulated between females and males.
Results: C57Bl/6 male and intact or ovariectomized female mice were infused with angiotensin II (400 ng/kg per minute for 2 weeks).
Background: Angiotensin II (Ang II) induces vasodilation, in part, through angiotensin type 2 receptor (AT2R)-induced actions in conditions associated with angiotensin type 1 receptor (AT1R) blockade and AT2R upregulation. Ang II/AT2R-induced vasodilation involves nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-dependent processes. We previously demonstrated that AT2R-mediated effects involve inhibition of the RhoA/Rho kinase pathway.
View Article and Find Full Text PDFNitric oxide (NO) has been implicated in the development of heart failure, although the source, significance, and functional role of the different NO synthase (NOS) isoforms in this pathology are controversial. The presence of a neuronal-type NOS isoform (NOS1) in the cardiac sarcoplasmic reticulum has been recently discovered, leading to the hypothesis that NOS1-derived NO may notably alter myocardial inotropy. However, the regulation and role(s) of NOS1 in cardiac diseases remain to be determined.
View Article and Find Full Text PDFBackground: Development of high blood pressure (BP) is associated with an increased expression of neuronal nitric oxide synthase (nNOS) in vascular smooth muscle cells.
Methods: We investigated whether or not changes in intraluminal pressure affect nNOS expression in carotid arteries of normotensive rats. Expression of nNOS and other NOS isoforms was determined by Western blot analysis in rat carotid arteries maintained up to 24 h at different levels of intraluminal pressure in an organ culture system.