Publications by authors named "Talin A"

Article Synopsis
  • Mantle cell lymphoma (MCL) is a severe form of non-Hodgkin lymphoma with a generally poor outcome, and the effectiveness of PET/CT scans in assessing treatment response in these patients is still uncertain.
  • A study analyzed data from 120 MCL patients, focusing on various PET/CT parameters to determine their impact on progression-free survival (PFS) and overall survival (OS) following treatment.
  • The findings showed that metabolic response and tumor burden parameters (like metabolic tumor volume and total lesion glycolysis) are key predictors of PFS, while features related to tumor spread are important for estimating OS.
View Article and Find Full Text PDF

Scanning electron microscopy (SEM), a century-old technique, is today a ubiquitous method of imaging the surface of nanostructures. However, most SEM detectors simply count the number of secondary electrons from a material of interest, and thereby overlook the rich material information contained within them. Here, by simple modifications to a standard SEM tool, we resolve the momentum and energy information on secondary electrons by directly imaging the electron plume generated by the electron beam of the SEM.

View Article and Find Full Text PDF

Any electrical signal propagating in a metallic conductor loses amplitude due to the natural resistance of the metal. Compensating for such losses presently requires repeatedly breaking the conductor and interposing amplifiers that consume and regenerate the signal. This century-old primitive severely constrains the design and performance of modern interconnect-dense chips.

View Article and Find Full Text PDF

There is growing interest in material candidates with properties that can be engineered beyond traditional design limits. Compositionally complex oxides (CCO), often called high entropy oxides, are excellent candidates, wherein a lattice site shares more than four cations, forming single-phase solid solutions with unique properties. However, the nature of compositional complexity in dictating properties remains unclear, with characteristics that are difficult to calculate from first principles.

View Article and Find Full Text PDF

Realizing rechargeable cells with practical energy and power density requires electrodes with high active material loading, a remaining challenge for solid-state batteries. Here, we present a new strategy based on ionogel-derived solid-state electrolytes (SSEs) to form composite electrodes that enable high active material loading (>10 mg/cm, ~9 mA/cm at 1C) in a scalable approach for fabricating Li-ion cells. By tuning the precursor and active materials composition incorporated into the composite lithium titanate electrodes, we achieve near-theoretical capacity utilization at C/5 rates and cells capable of stable cycling at 5.

View Article and Find Full Text PDF

Neuromorphic computing promises an energy-efficient alternative to traditional digital processors in handling data-heavy tasks, primarily driven by the development of both volatile (neuronal) and nonvolatile (synaptic) resistive switches or memristors. However, despite their energy efficiency, memristor-based technologies presently lack functional tunability, thus limiting their competitiveness with arbitrarily programmable (general purpose) digital computers. This work introduces a two-terminal bilayer memristor, which can be tuned among neuronal, synaptic, and hybrid behaviors.

View Article and Find Full Text PDF

Heat dissipation is a natural consequence of operating any electronic system. In nearly all computing systems, such heat is usually minimized by design and cooling. Here, we show that the temporal dynamics of internally produced heat in electronic devices can be engineered to both encode information within a single device and process information across multiple devices.

View Article and Find Full Text PDF

While digital computers rely on software-generated pseudo-random number generators, hardware-based true random number generators (TRNGs), which employ the natural physics of the underlying hardware, provide true stochasticity, and power and area efficiency. Research into TRNGs has extensively relied on the unpredictability in phase transitions, but such phase transitions are difficult to control given their often abrupt and narrow parameter ranges (e.g.

View Article and Find Full Text PDF

Understanding the limits of spatiotemporal carrier dynamics, especially in III-V semiconductors, is key to designing ultrafast and ultrasmall optoelectronic components. However, identifying such limits and the properties controlling them has been elusive. Here, using scanning ultrafast electron microscopy, in bulk n-GaAs and p-InAs, we simultaneously measure picosecond carrier dynamics along with three related quantities: subsurface band bending, above-surface vacuum potentials, and surface trap densities.

View Article and Find Full Text PDF

This retrospective study investigated the prognostic role of disease dissemination features (Dmax and Dmax) measured by 2-[F]FDG PET/CT in newly diagnosed Burkitt Lymphoma (BL) patients, comparing their performance with other metabolic parameters. We included 78 patients diagnosed with BL between 2010 and 2022 with an available baseline PET, interim PET/CT (iPET) and end of treatment PET/CT (eotPET) and with a minimum of two 2-[F]FDG avid lesions present at the baseline scan. Dmax was calculated from the three-dimensional coordinates of the baseline metabolic tumor volume (MTV) by using LIFEx software; Dmax was calculated as Dmax normalized for body surface area according to the Du Bois method.

View Article and Find Full Text PDF

Different insights into the connection between kidney [F]fluorodesoxyglucose ([F]FDG) uptake at positron emission tomography/computed tomography (PET/CT) and renal function have been proposed in the past. The aim of this study was therefore to assess the presence of a correlation between these two parameters. Kidney uptakes were assessed and compared to the creatinine (Cr) values and estimated glomerular filtration rate (EGFR) among different classes of renal functional impairment or kidney status.

View Article and Find Full Text PDF

Aluminum nitride (AlN) is one of the few electrically insulating materials with excellent thermal conductivity, but high-quality films typically require exceedingly hot deposition temperatures (>1000 °C). For thermal management applications in dense or high-power integrated circuits, it is important to deposit heat spreaders at low temperatures (<500 °C), without affecting the underlying electronics. Here, we demonstrate 100 nm to 1.

View Article and Find Full Text PDF

Rugged Pd-metal-insulator-semiconductor (Pd-MIS) hydrogen sensors for detecting charge-exchange particles in fusion reactors have been constructed by utilizing a novel patterned adhesion layer. Poor adhesion at the interface between Pd and SiO is a common failure mode for Pd-MIS devices, severely limiting the Pd thickness and their usefulness as hydrogen sensors. The mechanical integrity of the Pd coatings is of particular importance in magnetic fusion energy research where the Pd-MIS diodes are used to measure hydrogen charge-exchange neutral fluence at the wall in tokamaks.

View Article and Find Full Text PDF

We report a novel delithiation process for epitaxial thin films of LiCoO(001) cathodes using only physical methods, based on ion sputtering and annealing cycles. Preferential Li sputtering followed by annealing produces a surface layer with a Li molar fraction in the range 0.5 < < 1, characterized by good crystalline quality.

View Article and Find Full Text PDF

Solar-powered photochemical water splitting using suspensions of photocatalyst nanoparticles is an attractive route for economical production of green hydrogen. SrTiO-based photocatalysts have been intensely investigated due to their stability and recently demonstrated near-100% external quantum yield (EQY) for water splitting using wavelengths below 360 nm. To extend the optical absorption into the visible, SrTiO nanoparticles have been doped with various transition metals.

View Article and Find Full Text PDF

Li-metal batteries (LMBs) employing conversion cathode materials (e.g., FeF) are a promising way to prepare inexpensive, environmentally friendly batteries with high energy density.

View Article and Find Full Text PDF

Encapsulation of electrocatalysts and photocatalysts with semipermeable nanoscopic oxide overlayers that exhibit selective transport properties is an attractive approach to achieve high redox selectivity. However, defects within the overlayers─such as pinholes, cracks, or particle inclusions─may facilitate local high rates of parasitic reactions by creating pathways for facile transport of undesired reactants to exposed active sites. Scanning electrochemical microscopy (SECM) is an attractive method to determine the influence of defects on macroscopic performance metrics thanks to its ability to measure the relative rates of competing electrochemical reactions with high spatial resolution over the electrode.

View Article and Find Full Text PDF

Emerging concepts for neuromorphic computing, bioelectronics, and brain-computer interfacing inspire new research avenues aimed at understanding the relationship between oxidation state and conductivity in unexplored materials. This report expands the materials playground for neuromorphic devices to include a mixed valence inorganic 3D coordination framework, a ruthenium Prussian blue analog (RuPBA), for flexible and biocompatible artificial synapses that reversibly switch conductance by more than four orders of magnitude based on electrochemically tunable oxidation state. The electrochemically tunable degree of mixed valency and electronic coupling between N-coordinated Ru sites controls the carrier concentration and mobility, as supported by density functional theory computations and application of electron transfer theory to in situ spectroscopy of intervalence charge transfer.

View Article and Find Full Text PDF

Non-von-Neumann computing using neuromorphic systems based on two-terminal resistive nonvolatile memory elements has emerged as a promising approach, but its full potential has not been realized due to the lack of materials and devices with the appropriate attributes. Unlike memristors, which require large write currents to drive phase transformations or filament growth, electrochemical random access memory (ECRAM) decouples the "write" and "read" operations using a "gate" electrode to tune the conductance state through charge-transfer reactions, and every electron transferred through the external circuit in ECRAM corresponds to the migration of ≈1 ion used to store analogue information. Like static dopants in traditional semiconductors, electrochemically inserted ions modulate the conductivity by locally perturbing a host's electronic structure; however, ECRAM does so in a dynamic and reversible manner.

View Article and Find Full Text PDF

Additive manufacturing can enable the fabrication of batteries in nonconventional form factors, enabling higher practical energy density due to improved material packing efficiency of power sources in devices. Furthermore, energy density can be improved by transitioning from conventional Li-ion battery materials to lithium metal anodes and conversion cathodes. Iron disulfide (FeS) is a prominent conversion cathode of commercial interest; however, the direct-ink-write (DIW) printing of FeS inks for custom-form battery applications has yet to be demonstrated or optimized.

View Article and Find Full Text PDF

LiCoO (LCO) is a common battery cathode material that has recently emerged as a promising material for other applications including electrocatalysis and as electrochemical random access memory (ECRAM). During charge-discharge cycling LCO exhibits phase transformations that are significantly complicated by electron correlation. While the bulk phase diagram for an ensemble of battery particles has been studied extensively, it remains unclear how these phases scale to nanometer dimensions and the effects of strain and diffusional anisotropy at the single-particle scale.

View Article and Find Full Text PDF

Conversion cathodes represent a viable route to improve rechargeable Li battery energy densities, but their poor electrochemical stability and power density have impeded their practical implementation. Here, we explore the impact cell fabrication, electrolyte interaction, and current density have on the electrochemical performance of FeS/Li cells by deconvoluting the contributions of the various conversion and intercalation reactions to the overall capacity. By varying the slurry composition and applied pressure, we determine that the capacity loss is primarily due to the large volume changes during (de)lithiation, leading to a degradation of the conductive matrix.

View Article and Find Full Text PDF

Electronic transport models for conducting polymers (CPs) and blends focus on the arrangement of conjugated chains, while the contributions of the nominally insulating components to transport are largely ignored. In this work, an archetypal CP blend is used to demonstrate that the chemical structure of the non-conductive component has a substantial effect on charge carrier mobility. Upon diluting a CP with excess insulator, blends with as high as 97.

View Article and Find Full Text PDF

Flexible electronic skin with features that include sensing, processing, and responding to stimuli have transformed human-robot interactions. However, more advanced capabilities, such as human-like self-protection modalities with a sense of pain, sign of injury, and healing, are more challenging. Herein, a novel, flexible, and robust diffusive memristor based on a copolymer of chlorotrifluoroethylene and vinylidene fluoride (FK-800) as an artificial nociceptor (pain sensor) is reported.

View Article and Find Full Text PDF