Publications by authors named "Talibah Metcalf"

Schistosomiasis is a disease caused by parasitic flatworms of the Schistosoma spp., and is increasingly recognized to alter the immune system, and the potential to respond to vaccines. The impact of endemic infections on protective immunity is critical to inform vaccination strategies globally.

View Article and Find Full Text PDF

Unlabelled: The impact of endemic infections on protective immunity is critical to inform vaccination strategies. In this study, we assessed the influence of infection on host responses in a Ugandan fishing cohort given a Hepatitis B (HepB) vaccine. Concentrations of schistosome-specific circulating anodic antigen (CAA) pre-vaccination showed a significant bimodal distribution associated with HepB titers, which were lower in individuals with high CAA.

View Article and Find Full Text PDF

Innate Lymphoid Cells (ILCs) are immune cells typically found on mucosal surfaces and in secondary lymphoid organs where they regulate the immune response to pathogens. Despite their key role in the immune response, there are still fundamental gaps in our understanding of ILCs. Here we report a human ILC population present in the follicles of tonsils and lymph nodes termed follicular regulatory ILCs (ILC) that to our knowledge has not been previously identified.

View Article and Find Full Text PDF

Follicular helper T cells (Tfh) play critical roles instructing, and initiating T-cell dependent antibody responses. The underlying mechanisms that enhance their function is therefore critical for vaccine development. Here we apply gene array analysis identifying adenosine deaminase (ADA) as a key molecule that delineates a human Tfh helper program in proliferating circulating Tfh (cTfh) cells and Germinal Centers Tfh (GC-Tfh).

View Article and Find Full Text PDF

Age-related alterations in immunity have been linked to increased incidence of infections and decreased responses to vaccines in the aging population. Human peripheral blood monocytes are known to promote Ag presentation and antiviral activities; however, the impact of aging on monocyte functions remains an open question. We present an in-depth global analysis examining the impact of aging on classical (CD14CD16), intermediate (CD14CD16), and nonclassical (CD14CD16) monocytes.

View Article and Find Full Text PDF

The RV254 cohort of HIV-infected very early acute (4thG stage 1 and 2) (stage 1/2) and late acute (4thG stage 3) (stage 3) individuals was used to study T helper- B cell responses in acute HIV infection and the impact of early antiretroviral treatment (ART) on T and B cell function. To investigate this, the function of circulating T follicular helper cells (cTfh) from this cohort was examined, and cTfh and memory B cell populations were phenotyped. Impaired cTfh cell function was observed in individuals treated in stage 3 when compared to stage 1/2.

View Article and Find Full Text PDF

Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV), an encephalitic flavivirus that preferentially causes disease in the elderly.

View Article and Find Full Text PDF

Aging leads to dysregulation of multiple components of the immune system that results in increased susceptibility to infections and poor response to vaccines in the aging population. The dysfunctions of adaptive B and T cells are well documented, but the effect of aging on innate immunity remains incompletely understood. Using a heterogeneous population of peripheral blood mononuclear cells (PBMCs), we first undertook transcriptional profiling and found that PBMCs isolated from old individuals (≥ 65 years) exhibited a delayed and altered response to stimulation with TLR4, TLR7/8, and RIG-I agonists compared to cells obtained from adults (≤ 40 years).

View Article and Find Full Text PDF

The majority of HIV-infected individuals fail to produce protective antibodies and have diminished responses to new immunizations. We report here that even though there is an expansion of follicular helper T (TFH) cells in HIV-infected individuals, the cells are unable to provide adequate B cell help. We found a higher frequency of programmed cell death ligand 1 (PD-L1)(+) germinal center B cells from lymph nodes of HIV-infected individuals suggesting a potential role for PD-1-PD-L1 interaction in regulating TFH cell function.

View Article and Find Full Text PDF

Sindbis virus (SINV) infection of neurons results in nonfatal viral encephalomyelitis and provides a model system for understanding recovery from virus infection of the central nervous system (CNS). Infection is followed by clearance of infectious virus, a gradual decrease in viral RNA, and then long-term maintenance of low levels of viral RNA. Antibody to the E2 glycoprotein is important for virus clearance, and B cells enter the CNS along with CD4(+) and CD8(+) T cells during the early clearance phase.

View Article and Find Full Text PDF

Chronic HIV infection, which is primarily characterized by the progressive depletion of total CD4(+) T cells, also causes persistent inflammation and immune activation. This is followed by profound changes in cellular and tissue microenvironments that often lead to prolonged immune dysfunction. The global nature of this immune dysfunction suggests that factors that are involved in immune cell survival, proliferation, differentiation and maturation are all affected.

View Article and Find Full Text PDF

Viruses that cause encephalomyelitis infect neurons and recovery from infection requires noncytolytic clearance of virus from the nervous system to avoid damaging these irreplaceable cells. Several murine model systems of virus infection have been used to identify clearance mechanisms. Quantitative analysis of Sindbis virus clearance over 6 months shows three phases: day 5-7, clearance of infectious virus, but continued presence of viral RNA; day 8-60, decreasing levels of viral RNA; day 60-180, maintenance of viral RNA at low levels.

View Article and Find Full Text PDF

Sindbis virus (SINV) infection of the central nervous system (CNS) provides a model for understanding the role of the immune response in recovery from alphavirus infection of neurons. Virus clearance occurred in three phases: clearance of infectious virus (days 3 to 7), clearance of viral RNA (days 8 to 60), and maintenance of low levels of viral RNA (>day 60). The antiviral immune response was initiated in the cervical lymph nodes with rapid extrafollicular production of plasmablasts secreting IgM, followed by germinal center production of IgG-secreting and memory B cells.

View Article and Find Full Text PDF

In Dictyostelium, sporulation occurs synchronously as prespore cells approach the apex of the aerial stalk during culmination. Each prespore cell becomes surrounded by its own coat comprised of a core of crystalline cellulose and a branched heteropolysaccharide sandwiched between heterogeneous cysteine-rich glycoproteins. The function of the heteropolysaccharide, which consists of galactose and N-acetylgalactosamine, is unknown.

View Article and Find Full Text PDF

Like the cyst walls of other protists, the spore coat of Dictyostelium discoideum is formed de novo to protect the enclosed dormant cell from stress. Spore coat assembly is initiated by exocytosis of protein and polysaccharide precursors at the cell surface, followed by the infusion of nascent cellulose fibrils, resulting in an asymmetrical trilaminar sandwich with cellulose filling the middle layer. A molecular complex consisting of cellulose and two proteins, SP85 and SP65, is associated with the inner and middle layers and is required for proper organization of distinct proteins in the outer layer.

View Article and Find Full Text PDF

Like animal cells, many unicellular eukaryotes modify mucin-like domains of secretory proteins with multiple O-linked glycans. Unlike animal mucin-type glycans, those of some microbial eukaryotes are initiated by alpha-linked GlcNAc rather than alpha-GalNAc. Based on sequence similarity to a recently cloned soluble polypeptide hydroxyproline GlcNAc-transferase that modifies Skp1 in the cytoplasm of the social ameba Dictyostelium, we have identified an enzyme, polypeptide alpha-N-acetylglucosaminyltransferase (pp alpha-GlcNAc-T2), that attaches GlcNAc to numerous secretory proteins in this organism.

View Article and Find Full Text PDF

The Dictyostelium spore is surrounded by a 220 microm thick trilaminar coat that consists of inner and outer electron-dense layers surrounding a central region of cellulose microfibrils. In previous studies, a mutant strain (TL56) lacking three proteins associated with the outer layer exhibited increased permeability to macromolecular tracers, suggesting that this layer contributes to the coat permeability barrier. Electron microscopy now shows that the outer layer is incomplete in the coats of this mutant and consists of a residual regular array of punctate electron densities.

View Article and Find Full Text PDF