Publications by authors named "Talia P"

Although studies on non-tuberculous mycobacteria have increased in recent years because they cause a considerable proportion of infections, their cellulolytic system is still poorly studied. This study presents a characterization of the cellulolytic activities of environmental mycobacterial isolates derived from soil and water samples from the central region of Argentina, aimed to evaluate the conservation of the mechanism for the degradation of cellulose in this group of bacteria. The molecular and genomic identification revealed identity with Mycolicibacterium septicum.

View Article and Find Full Text PDF

The utilization of grape juice from low oenological value grape varieties for bioethanol production represent an alternative for diversification and value addition in viticulture. Optimizing Very High Gravity (VHG) fermentation can significantly increase ethanol productivity while reducing water and energy consumption. In this study, the impact of different nitrogen sources on growth and fermentative performance of locally selected yeast strains was investigated.

View Article and Find Full Text PDF

The aim of the present study was to assess the biochemical and molecular structural characteristics of a novel alkali-thermostable GH10 xylanase (Xyl10B) identified in a termite gut microbiome by a shotgun metagenomic approach. This endoxylanase candidate was amplified, cloned, heterologously expressed in Escherichia coli and purified. The recombinant enzyme was active at a broad range of temperatures (37-60 ºC) and pH values (4-10), with optimal activity at 50 ºC and pH 9.

View Article and Find Full Text PDF

The termite gut microbiome is dominated by lignocellulose degrading microorganisms. This study describes the intestinal microbiota of four Argentinian higher termite species with different feeding habits: (hardwood), (softwood), (soil organic matter/grass) and (grass) by deep sequencing of amplified 16S rRNA and ITS genes. In addition, we have performed a taxonomic and gut community structure comparison incorporating into the analysis the previously reported microbiomes of additional termite species with varied diets.

View Article and Find Full Text PDF
Article Synopsis
  • Wheat straw is a widely available agricultural residue that can effectively produce biogas, a renewable energy source, prompting research into optimal wheat genotypes for both food and biogas production.
  • The study reviewed 36 wheat genotypes, revealing that French varieties yielded the most grain, while CIMMYT varieties had the least straw yield, and Criollo types were most prone to lodging.
  • Key traits like straw yield positively correlated with grain yield but negatively with plant height in Criollo genotypes, and the top performing genotypes Baguette 31 and SNR Nogal combined high yields and conversion efficiency, whereas older varieties like Klein Atlas may offer valuable traits as well.
View Article and Find Full Text PDF

The issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product.

View Article and Find Full Text PDF

The zoonotic enterohemorrhagic Escherichia coli (EHEC) O157: H7 bacterium causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS) in humans. Cattle are primary reservoirs and EHEC O157: H7; the bacteria predominately inhabit the colon and recto-anal junctions (RAJ). The early innate immune reactions in the infected gut are critical in the pathogenesis of EHEC O157: H7.

View Article and Find Full Text PDF

In the efficient bioconversion of polysaccharides from lignocellulosic biomass, endoglucanases and β-glucosidases are key enzymes for the deconstruction of β-glucans. In this work, we focused on a GH8 endoglucanase (Cel8Pa) and a GH1 β-glucosidase (Bg1Pa) from A59. Cel8Pa was active on a broad range of substrates, such as β-glucan from barley (24.

View Article and Find Full Text PDF

Here, we characterize two novel GH5 endoglucanases (GH5CelA and GH5CelB) from an uncultured bacterium identified in termite gut microbiomes. Both genes were codon-optimized, synthetized, cloned, and expressed as recombinant proteins in Escherichia coli for subsequent purification. Both enzymes showed activity on the pNPC and barley β-glucan substrates, whereas GH5CelB also showed low activity on carboxymethyl cellulose.

View Article and Find Full Text PDF

The cotton boll weevil, Anthonomus grandis, is a major pest of cotton crops in South America. In this work, partial biochemical characterizations of (hemi) cellulases and pectinases activities in the digestive system (head- and gut- extracts) of A. grandis were evaluated.

View Article and Find Full Text PDF

In this study, we used shotgun metagenomic sequencing to characterise the microbial metabolic potential for lignocellulose transformation in the gut of two colonies of Argentine higher termite species with different feeding habits, Cortaritermes fulviceps and Nasutitermes aquilinus. Our goal was to assess the microbial community compositions and metabolic capacity, and to identify genes involved in lignocellulose degradation. Individuals from both termite species contained the same five dominant bacterial phyla (Spirochaetes, Firmicutes, Proteobacteria, Fibrobacteres and Bacteroidetes) although with different relative abundances.

View Article and Find Full Text PDF

Glycoside hydrolase family 8 (GH8) includes endoglucanases, lichenases, chitosanases and xylanases, which are essential for polysaccharides breakdown. In this work, we studied a thermally stable GH8 from the cellulose synthase complex of Enterobacter sp. R1, for deconstruction of β-glucans.

View Article and Find Full Text PDF

Aims: Lignocellulosic biomass deconstruction is a bottleneck for obtaining biofuels and value-added products. Our main goal was to characterize the secretome of a novel isolate, Cellulomonas sp. B6, when grown on residual biomass for the formulation of cost-efficient enzymatic cocktails.

View Article and Find Full Text PDF

Biomass hydrolysis constitutes a bottleneck for the biotransformation of lignocellulosic residues into bioethanol and high-value products. The efficient deconstruction of polysaccharides to fermentable sugars requires multiple enzymes acting concertedly. GH43 β-xylosidases are among the most interesting enzymes involved in hemicellulose deconstruction into xylose.

View Article and Find Full Text PDF

Cohnella is a highly cellulolytic bacterial genus, which can be found in a variety of habitats. The aim of this study was to assess its presence in the digestive tract of termite species collected in North-eastern Argentina: Nasutitermes aquilinus, N. corniger and Cortaritermes fulviceps.

View Article and Find Full Text PDF

Cotton boll weevils, , are omnivorous coleopteran that can feed on diets with different compositions, including recalcitrant lignocellulosic materials. We characterized the changes in the prokaryotic community structure and the hydrolytic activities of larvae fed on different lignocellulosic diets. larvae were fed on three different artificial diets: cottonseed meal (CM), Napier grass (NG) and corn stover (CS).

View Article and Find Full Text PDF

Cellulomonas sp. strain B6 was isolated from a subtropical forest soil sample and presented (hemi)cellulose-degrading activity. We report here its draft genome sequence, with an estimated genome size of 4 Mb, a G+C content of 75.

View Article and Find Full Text PDF

Paenibacillus sp. A59 was isolated from decaying forest soil in Argentina and characterized as a xylanolytic strain. We report the draft genome sequence of this isolate, with an estimated genome size of 7 Mb which harbor 6,424 coding sequences.

View Article and Find Full Text PDF
Article Synopsis
  • Saccharum officinarum bagasse and Pennisetum purpureum are effective feedstocks for bioethanol in Argentina and Brazil, studied for their biomass efficiency before and after acid pretreatment.
  • Chemical analysis showed that acid pretreatment removed part of the hemicellulose, enhancing (hemi) cellulolytic activity in termite gut digestomes when compared to untreated samples.
  • This research identified specific cellulolytic bacteria and enzymes from Argentinean native termites, highlighting their potential in breaking down lignocellulosic biomass for bioethanol production.
View Article and Find Full Text PDF

The use of lignocellulosic biomass for second generation biofuels requires optimization of enzymatic breakdown of plant cell walls. In this work, cellulolytic bacteria were isolated from a native and two cultivated forest soil samples. Amplification of glycosyl hydrolases was attempted by using a low stringency-degenerate primer PCR strategy, using total soil DNA and bulk DNA pooled from positive colonies as template.

View Article and Find Full Text PDF

Cellulolytic activities of three bacterial consortia derived from a forest soil sample from Chaco region, Argentina, were characterized. The phylogenetic analysis of consortia revealed two main highly supported groups including Achromobacter and Pseudomonas genera. All three consortia presented cellulolytic activity.

View Article and Find Full Text PDF

Prospection of cellulose-degrading bacteria in natural environments allows the identification of novel cellulases and hemicellulases that could be useful in second-generation bioethanol production. In this work, cellulolytic bacteria were isolated from decaying native forest soils by enrichment on cellulose as sole carbon source. There was a predominance of Gram positive isolates that belonged to the phyla Proteobacteria and Firmicutes.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed the 16S ribosomal RNA gene to assess bacterial diversity in a pristine forest soil and two soil cultures enriched with cellulolytic bacteria.
  • High bacterial diversity was found in native soil, with over 76% of sequences belonging to Actinobacteria, Proteobacteria, and Acidobacteria, while Proteobacteria dominated the enriched samples.
  • Key bacterial genera identified included Brevundimonas and Caulobacter, along with several others, indicating potential for discovering new enzymes for cellulose degradation.
View Article and Find Full Text PDF

Bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) and cycling-primed in situ labeling (C-PRINS) techniques were evaluated for integration of physical and genetic maps of sunflower (Helianthus annuus L.). Single-site SSR markers were selected from three linkage groups of a high-density sunflower genetic map.

View Article and Find Full Text PDF